分析 (1)令n等于1代入2Sn=an2+an中,即可求出首項(xiàng)a1,然后把n換為n-1,得到(an+an-1)(an-an-1-1)=0,即可得所以{an}為以a1=1為首項(xiàng),公差為1的等差數(shù)列,
(2)根據(jù)bn的通項(xiàng)公式,利用放縮法和裂項(xiàng)求和即可證明.
解答 解:(I)由Sn=$\frac{{{a}_{n}}^{2}+{a}_{n}}{2}$可得:2Sn=an2+an,
當(dāng)n=1時(shí),由2S1=a12+a1,且an>0可得:a1=1,
當(dāng)n≥2時(shí),2Sn=an2+an…①
2Sn-1=an-12+an-1,…②…(3分)
由 ①-②得:2an=an2+an-an-12-an-1,…②,
即:(an+an-1)(an-an-1-1)=0
∵an>0
∴an-an-1-1=0
∴{an}為以a1=1為首項(xiàng),公差為1的等差數(shù)列,an=n (n∈N*),
(II)由bn=$\frac{1}{({a}_{n}+2)^{2}}$=$\frac{1}{(n+2)^{2}}$<$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
∴Tn=$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$+…+$\frac{1}{(n+2)^{2}}$<($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+($\frac{1}{n+1}$-$\frac{1}{n+2}$ )<$\frac{1}{2}$-$\frac{1}{n+2}$<$\frac{1}{2}$
∴對(duì)任意正整數(shù),都有Tn<$\frac{1}{2}$成立
點(diǎn)評(píng) 本題考查學(xué)生靈活運(yùn)用數(shù)列遞推式的求解通項(xiàng)公式,以及放縮法和裂項(xiàng)求和,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $1-\frac{π}{6}$ | D. | $1-\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com