精英家教網 > 高中數學 > 題目詳情

某工廠擬建一座平面為長方形,且面積為200 m2的三級污水處理池,由于地形限制,長和寬都不超過16 m,處理池的高度一定,如果四周池壁造價400元/m,中間兩道隔墻造價為248元/m,池底造價為80元/m2那么如何設計污水池的長與寬,才能使總造價最低?

答案:
解析:

  答:當水池的長為16 m,寬為12.5 m時,總造價最低.

  解:設污水處理池的長為x米,寬為y米,總造價為z元.

  由題意知xy=200(0<x≤16,0<y≤16).

  z=2(x+y)×400+248×2y+80×200=800(x+y)+496y+16000=1296y+800x+16000

  =1296×+800x+16000=800(x+)+16000.

  f(x)=x+在(0,16]上單調遞減.

  ∴當x=16時,總造價z最小,此時y==12.5(m).


練習冊系列答案
相關習題

科目:高中數學 來源:設計必修五數學北師版 北師版 題型:044

某工廠擬建一座平面為長方形,且面積為200 m2的三級污水處理池,由于地形限制,長和寬都不超過16 m,處理池的高度一定,如果四周池壁造價400元/m,中間兩道隔墻造價為248元/m,池底造價為80元/m2,那么如何設計污水池的長與寬,才能使總造價最低?

查看答案和解析>>

科目:高中數學 來源:學習高手必修五數學蘇教版 蘇教版 題型:044

某工廠擬建一座平面為長方形,且面積為200 m2的三級污水處理池,由于地形限制,長和寬都不超過16 m,處理池的高度一定,如果四周池壁造價400元/m,中間兩道隔墻造價為248元/m,池底造價為80元/m2,那么如何設計污水池的長與寬,才能使總造價最低?

查看答案和解析>>

科目:高中數學 來源:訓練必修五數學人教A版 人教A版 題型:044

某工廠擬建一座平面為長方形,且面積為200 m2的三級污水處理池,由于地形限制,長和寬都不超過16 m,處理池的高度為2 m,如果四周池壁造價為400元/m2,中間兩道隔墻造價為248元/m2,池底造價為80元/m2,那么如何設計污水處理池的長與寬,才能使總造價最低?

查看答案和解析>>

科目:高中數學 來源: 題型:

某工廠擬建一座平面為長方形,且面積為200 m2的三級污水處理池,由于地形限制,長和寬都不超過16 m,處理池的高度為2 m,如果四周池壁造價為400元/m2,中間兩道隔墻造價為248元/m2,池底造價為80元/m2,那么如何設計污水處理池的長與寬,才能使總造價最低?

查看答案和解析>>

同步練習冊答案