2003年伊拉克戰(zhàn)爭初期,美英聯(lián)軍為了準(zhǔn)確分析戰(zhàn)場形勢,有分別位于科威特和沙特的兩個(gè)距離為
3
a
2
的軍事基地C和D測得伊拉克兩支精銳部隊(duì)分別在A處和B處,且∠ADB=30°,∠BDC=30°,∠DCA=60°,∠ACB=45°,如圖所示,求伊軍這兩支精銳部隊(duì)的距離.
考點(diǎn):解三角形的實(shí)際應(yīng)用
專題:應(yīng)用題,解三角形
分析:先在△BCD中,求得BC的長,再求得AC的長,最后在△ABC中利用余弦定理,即可求得AB的長,從而可得結(jié)論.
解答: 解:在△BCD中,DC=
3
a
2
,∠DBC=180°-30°-60°-45°=45°,∠BDC=30°,
3
2
a
sin45°
=
BC
sin30°
,∴BC=
6
4
a
在等邊三角形ACD中,AC=AD=CD=
3
a
2

在△ABC中,AC=
3
a
2
,BC=
6
4
a,∠ACB=45°
∴AB2=
3
4
a2+
3
8
a2-2•
3
a
2
6
4
a•cos45°=
3
8
a2,
AB=
6
4
a
點(diǎn)評:本題重點(diǎn)考查正弦定理與余弦定理的運(yùn)用,選擇三角形,合理運(yùn)用定理是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線ax+by+c=0的圖形如圖所示,則(  )
 
A、若c>0,則a>0,b>0
B、若c>0,則a<0,b>0
C、若c<0,則a>0,b<0
D、若c<0,則a>0,b>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)右焦點(diǎn)為F,其右準(zhǔn)線與x軸的交點(diǎn)為A,在橢圓上存在點(diǎn)P滿足線段AP的垂直平分線過點(diǎn)F,則橢圓的離心率的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算下列各式的值.
(1)log2
7
48
+log212-
1
2
log242;
(2)lg52+
2
3
lg8+lg5•lg20+lg22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ex-ax-a.
(Ⅰ)若f(x)≥0對一切x≥-1恒成立,求a的取值范圍;
(Ⅱ)設(shè)g(x)=f(x)+
a
ex
,且A(x1,y1),B(x2,y2)(x1≠x2)是曲線y=g(x)上任意兩點(diǎn),若對任意的a≤-1,直線AB的斜率恒大于常數(shù)m,求m的取值范圍;
(Ⅲ)求證:1n+3n+…+(2n-1)n
e
e-1
(2n)n(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l:kx+y+2=0與曲線C:ρ=2cosθ相交,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(2,0),B(0,2),C(cosθ,sinθ),O為坐標(biāo)原點(diǎn).
(1)
AC
BC
=-
1
3
,求sin2θ的值;
(2)若|
OA
+
OC
|=
7
,且θ∈(-π,0),求
OB
OC
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人參加某種選拔測試.在備選的10道題中,甲答對其中每道題的概率都是
3
5
,乙能答對其中的5道題.規(guī)定每次考試都從備選的10道題中隨機(jī)抽出3道題進(jìn)行測試,答對一題加10分,答錯(cuò)一題(不答視為答錯(cuò))減5分,至少得15分才能入選.
(Ⅰ)分別求甲得0分和乙得0分的概率;
(Ⅱ)求甲、乙兩人中至少有一人入選的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn+an=-
1
2
n2-
3
2
n+1(n∈N*),設(shè)bn=an+n.
(Ⅰ)證明:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)求數(shù)列{nbn}的前n項(xiàng)和Tn;
(Ⅲ)設(shè)cn=(
1
2
n-an,dn=
cn2+cn+1
cn2+cn
,若數(shù)列{dn}的前2013項(xiàng)和為P,求不超過P的最大的整數(shù)值.

查看答案和解析>>

同步練習(xí)冊答案