分析 由已知條件,利用函數(shù)的奇偶性和周期性求解.
解答 解:∵定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),f(x)=f(x+2),
且x∈(-1,0)時(shí),f(x)=-x3,
∴f($\frac{21}{2}$)=f($\frac{1}{2}$)=-f(-$\frac{1}{2}$)=-[-(-$\frac{1}{2}$)3]=-$\frac{1}{8}$,
∵f(x)滿足f(-x)=-f(x),f(x)=f(x+2),
∴f(1)=f(-1),且f(1)=-f(-1),
∴f(-1)=0,∴f(1)=0,
f(21)=f(1)=0.
故答案為:-$\frac{1}{8}$,0.
點(diǎn)評(píng) 本考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)的奇偶性和周期性的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一、二象限 | B. | 第三、四象限 | ||
C. | 第一、四象限 | D. | 第二、三象限或x負(fù)半軸或y軸 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com