2.如圖,圓錐的頂點為P,底面圓心為O,線段AB和線段CD都是底面圓的直徑,且直線AB與直線CD的夾角為$\frac{π}{2}$,已知|OA|=1,|PA|=2.
(1)求該圓錐的體積;
(2)求證:直線AC平行于平面PBD,并求直線AC到平面PBD的距離.

分析 (1)利用圓錐的體積公式求該圓錐的體積;
(2)由對稱性得AC∥BD,即可證明直線AC平行于平面PBD,C到平面PBD的距離即直線AC到平面PBD的距離,由VC-PBD=VP-BCD,求出直線AC到平面PBD的距離.

解答 (1)解:設圓錐的高為h,底面半徑為r,則r=1,h=$\sqrt{3}$,
∴圓錐的體積V=$\frac{1}{3}$Sh=$\frac{\sqrt{3}}{3}π$;
(2)證明:由對稱性得AC∥BD,
∵AC?平面PBD,BD?平面PBD,
∴AC∥平面PBD,
∴C到平面PBD的距離即直線AC到平面PBD的距離,
設C到平面PBD的距離為d,則由VC-PBD=VP-BCD,得$\frac{1}{3}{S}_{△PBD}•d=\frac{1}{3}{S}_{△BCD}•h$,
可得$\frac{1}{3}•\frac{\sqrt{7}}{2}d=\frac{1}{3}•1•\sqrt{4-1}$,∴d=$\frac{2\sqrt{21}}{7}$,
∴直線AC到平面PBD的距離為$\frac{2\sqrt{21}}{7}$.

點評 本題考查圓錐體積的計算,考查線面平行的判定,考查體積的計算,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知E,F(xiàn)分別是棱長為1的正方體ABCD-A1B1C1D1的棱BC,CC1的中點,則截面AEFD1與底面ABCD所成二面角的正弦值是$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線圖是一個幾何體的三視圖,則該幾何體體積為( 。
A.$\frac{8π}{3}$B.C.$\frac{14π}{3}$D.$\frac{16π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{14}{3}$B.5C.$\frac{16}{3}$D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知數(shù)列{an}的首項a1=1,且點(an,an+1)在函數(shù)f(x)=$\frac{x}{4x+1}$的圖象上,bn=$\frac{1}{{a}_{n}}$(n∈N*).
(1)求證:數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an},{bn}的通項公式;
(2)ak•ak+1是否為數(shù)列{an}中的項,并作說明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.一個幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是( 。
A.23cm2B.22cm2C.$\frac{23}{2}$cm2D.11cm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{5}{3}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.定義域在R上的函數(shù)f(x)滿足f(x+1)=2f(x),若當-1≤x≤0時,f(x)=-$\frac{x(x+1)}{2}$,則當0≤x≤1時,f(x)=-x(x-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設x為區(qū)間[-2,2]內(nèi)的均勻隨機數(shù),則計算機執(zhí)行如圖程序后,輸出的y值落在區(qū)間[-1,1]內(nèi)的概率( 。
A.$\frac{3}{4}$B.$\frac{3}{8}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習冊答案