已知定義在上的奇函數(shù)處取得極值.
(Ⅰ)求函數(shù)的解析式;
  (Ⅱ)試證:對(duì)于區(qū)間上任意兩個(gè)自變量的值,都有成立;
(Ⅲ)若過(guò)點(diǎn)可作曲線的三條切線,試求點(diǎn)P對(duì)應(yīng)平面區(qū)域的面積.
(Ⅰ)    (Ⅲ)8
(I)由題意,∴ ,
,又,

解得.
------------------------------------------------4分
(II)∵,
當(dāng)時(shí),,故在區(qū)間[-1,1]上為減函數(shù),

對(duì)于區(qū)間[-1,1]上任意兩個(gè)自變量的值,
-------------------------------9分
(III)設(shè)切點(diǎn)為,則點(diǎn)M的坐標(biāo)滿足
,故切線的方程為:
,
,∴
整理得.
∵若過(guò)點(diǎn)可作曲線的三條切線,
∴關(guān)于方程有三個(gè)實(shí)根.
設(shè),則
,
,得.
由對(duì)稱性,先考慮
,上單調(diào)遞增,在上單調(diào)遞減.
∴函數(shù)的極值點(diǎn)為,或
∴關(guān)于方程有三個(gè)實(shí)根的充要條件是
,解得.
時(shí),點(diǎn)P對(duì)應(yīng)平面區(qū)域的面積
時(shí),所求點(diǎn)P對(duì)應(yīng)平面區(qū)域的面積為,即8.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x3-3ax2+2bx在點(diǎn)x=1處有極小值-1,試確定a,b的值,并求出f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)是定義在[-1,1]上的偶函數(shù),的圖象與的圖象關(guān)于直線對(duì)稱,且當(dāng)x∈[ 2,3 ] 時(shí),
(1)求的解析式;
(2)若上為增函數(shù),求的取值范圍;
(3)是否存在正整數(shù),使的圖象的最高點(diǎn)落在直線上?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間,并判斷函數(shù)的奇偶性;
(Ⅱ)若不等式的解集是集合的子集,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知f(x)=x3mx2x+2(mR)
如果函數(shù)的單調(diào)減區(qū)間恰為(-,1),求函數(shù)f(x)的解析式;
(2)若f(x)的導(dǎo)函數(shù)為f '(x),對(duì)任意x∈(0,+∞),不等式f '(x)≥2xlnx-1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:函數(shù)是常數(shù))是奇函數(shù),且滿足
(Ⅰ)求的值;
(Ⅱ)試判斷函數(shù)在區(qū)間上的單調(diào)性并說(shuō)明理由;
(Ⅲ)試求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132945887289.gif" style="vertical-align:middle;" />,的導(dǎo)函數(shù)為,且對(duì)任意正數(shù)均有,
(1)判斷函數(shù)上的單調(diào)性;
(2)設(shè),比較的大小,并證明你的結(jié)論;
(3)設(shè),若,比較的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè),則等于( )
A.B.C.0D.以上都不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)。
(1)若,且函數(shù)存在單調(diào)遞減區(qū)間,求的取值范圍;
(2)當(dāng)時(shí),求函數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案