14.已知sin(π+θ)+cos($\frac{π}{2}$+θ)=-2$\sqrt{3}$cos(2π-θ),則sinθcosθ-cos2θ=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}-1}{4}$D.$\frac{1-\sqrt{3}}{4}$

分析 已知等式利用誘導(dǎo)公式化簡,再利用同角三角間基本關(guān)系求出tanθ的值,原式分母看做“1”,利用同角三角函數(shù)間基本關(guān)系化簡后,將tanθ的值代入計(jì)算即可求出值.

解答 解:已知等式整理得:-sinθ-sinθ=-2$\sqrt{3}$cosθ,即-2sinθ=-2$\sqrt{3}$cosθ,
∴tanθ=$\sqrt{3}$,
則原式=$\frac{sinθcosθ-co{s}^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{tanθ-1}{ta{n}^{2}θ+1}$=$\frac{\sqrt{3}-1}{3+1}$=$\frac{\sqrt{3}-1}{4}$,
故選:C.

點(diǎn)評 此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=x2-ax與y=log|a|x(a≠0,|a|≠1|)在同一直角坐標(biāo)系中的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知⊙A:(x-1)2+y2=16及定點(diǎn)B(-1,0),點(diǎn)P為⊙A上的任意一點(diǎn),線段PB的垂直平分線交PA于M點(diǎn),則點(diǎn)M的軌跡方程為$\frac{x^2}{4}+\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)$f(x)=\frac{1}{{\sqrt{3-x}}}$的定義域?yàn)椋?∞,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\sqrt{x+2}+\frac{1}{2x+1}$
(1)求函數(shù)f(x)的定義域
(2)求f(-1),當(dāng)a>0時(shí),求f(a+1)
(3)判斷點(diǎn)$({2,\frac{11}{5}})$是否在f(x)的函數(shù)圖象上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)點(diǎn)A(-1,0),B(1,0),動點(diǎn)P到A點(diǎn)的距離與到B點(diǎn)的距離之比為2,則點(diǎn)P的軌跡方程是( 。
A.${(x-\frac{5}{3})^2}+{y^2}=\frac{16}{9}$B.${(x+\frac{5}{3})^2}+{y^2}=\frac{16}{9}$C.${(x-\frac{5}{3})^2}+{y^2}=\frac{4}{3}$D.${(x+\frac{5}{3})^2}+{y^2}=\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.甲、乙兩名同學(xué)從三門選修課中各選修兩門,則兩人所選課程中恰有一門相同的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.自點(diǎn)A(-3,3)發(fā)出的光線l射到x軸上,被x軸反射,其反射光線所在的直線與圓x2+y2-4x-4y-1=0相交于MN,且|MN|=4,則光線l所在的直線方程為:x+2y-3=0或2x+y+3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\overrightarrow a=(x,2)$,$\overrightarrow b=(2,-1)$,$\overrightarrow a$∥$\overrightarrow b$,則$|\overrightarrow a+\overrightarrow b|$=(  )
A.2$\sqrt{5}$B.5C.$\sqrt{10}$D.$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案