已知一個幾何體的主視圖與左視圖均為邊長為2的正三角形,其俯視圖是邊長為2的正方形,則此幾何體的內(nèi)切球的表面積為( 。
A、12π
B、
25
3
π
C、
8
3
π
D、
4
3
π
考點:球的體積和表面積
專題:計算題,空間位置關(guān)系與距離
分析:三視圖復(fù)原的幾何體是正四棱錐,求出底面面積,正四棱錐的高,可求出體積,利用等體積求出幾何體的內(nèi)切球的半徑,可得幾何體的內(nèi)切球的表面積.
解答: 解:據(jù)條件可得幾何體為底面邊長為2的正方形,側(cè)面是等腰三角形,其底邊上的高也為2的正四棱錐,
其體積V=
1
3
×4×
22-1
=
4
3
3

設(shè)幾何體的內(nèi)切球的半徑為r,則
1
3
×(4+4×
1
2
×2×2)
r=
4
3
3
,
∴r=
3
3
,
∴幾何體的內(nèi)切球的表面積為4π×(
3
3
2=
4
3
π

故選:D.
點評:本題是基礎(chǔ)題,考查幾何體的三視圖,幾何體的體積的求法,準(zhǔn)確判斷幾何體的形狀是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由不等式組 
x≤0
y≥0
y-x-2≤0
確定的平面區(qū)域記為Ω1,不等式組 
x+y≤1
x+y≥-2
確定的平面區(qū)域記為Ω2,則Ω1與Ω2公共部分的面積為( 。
A、
15
4
B、
3
2
C、
3
4
D、
7
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某地一天從6時到14時的溫度變化曲線近似滿足函數(shù)y=Asin(ω+φ)+b則在6≤x≤14時這段曲線的函數(shù)解析式是
 
.(不要求寫定義域)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

6為同學(xué)站成一排,甲、乙兩名同學(xué)必須相鄰的排法共有
 
種(用數(shù)字回答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在腰長為10cm的等腰直角三角形中作一個內(nèi)接矩形,使它的一邊上斜邊上,另外兩個頂點在兩個腰上,那么,矩形的長與寬各位多少時,矩形面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在以點O為圓心,AB為直徑的半圓中,P為半圓弧上一點,且AB=4,∠PAB=15°,若A、B分別為雙曲線的左、右焦點,則雙曲線的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng) 0<x≤
1
2
時,(
1
4
x<logax,則a的取值范圍是(  )
A、(0,
1
4
B、(
1
4
,1)
C、(1,4)
D、(
2
,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α、β都是銳角,且sinα=
5
13
,cos(α+β)=-
4
5
,則sinβ的值是( 。
A、
56
65
B、
16
65
C、
33
65
D、
63
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(
2
-
π
3
).
(1)請用“五點法”畫出函數(shù)f(x)在長度為一個周期的閉區(qū)間上的簡圖(先在所給的表格中填上所需的數(shù)值,再畫圖);
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案