由不等式組 
x≤0
y≥0
y-x-2≤0
確定的平面區(qū)域記為Ω1,不等式組 
x+y≤1
x+y≥-2
確定的平面區(qū)域記為Ω2,則Ω1與Ω2公共部分的面積為(  )
A、
15
4
B、
3
2
C、
3
4
D、
7
4
考點(diǎn):二元一次不等式(組)與平面區(qū)域
專題:不等式的解法及應(yīng)用
分析:作出兩個(gè)不等式組對(duì)應(yīng)的平面區(qū)域,根據(jù)圖象即可得到結(jié)論.
解答: 解:兩個(gè)不等式組對(duì)應(yīng)的圖象:
Ω1為△OAB,Ω2為兩平行之間的區(qū)域部分,
則Ω1與Ω2公共部分為四邊形OACD,
其中A(-2,0),B(0,2),D(0,1),
y-x-2=0
x+y=1
,解得
x=-
1
2
y=
3
2
,
即C(-
1
2
,
3
2
),
則S△OAB=
1
2
×2×2=2
,S△BCD=
1
2
×1×
1
2
=
1
4

則S四邊形OACD=S△OAB-S△BCD=2-
1
4
=
7
4
,
故選:D.
點(diǎn)評(píng):本題主要考查二元一次不等式組表示平面區(qū)域,求出交點(diǎn)坐標(biāo)即可求出Ω1與Ω2公共部分的面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

焦點(diǎn)在y軸上,焦距是18,離心率e=
3
2
的雙曲線方程是( 。
A、
y2
36
-
x2
45
=1
B、
y2
45
-
x2
36
=1
C、
y2
16
-
x2
4
=1
D、
y2
4
-
x2
16
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,兩個(gè)函數(shù)f(x)=eax,g(x)=blnx的圖象關(guān)于直線y=x對(duì)稱.
(1)求實(shí)數(shù)a,b滿足的關(guān)系式;
(2)當(dāng)a=1時(shí),在(
1
2
,+∞)上解不等式f(1-x)+g(x)<x2
(3)試指出函數(shù)h(x)=f(x)-g(x)在(0,
1
e
]的零點(diǎn)個(gè)數(shù),并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2-x,數(shù)列{an}滿足f(log2an)=-2n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:數(shù)列{an}是遞減數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)在[-4,+∞)上為增函數(shù),且y=f(x-4)是偶函數(shù),則f(-6),f(-4),f(0)的大小關(guān)系為
 
(從小到大用“<”連接)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a2=6,3Sn=(n+1)an+n(n+1).
(1)求a1,a3;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(1-2a)x,x≤1
logax+
1
3
,
x>1
,當(dāng)x1≠x2時(shí),
f(x1)-f(x2)
x1-x2
<0,則a的取值范圍是(  )
A、(0,
1
3
]
B、[
1
3
1
2
]
C、(0,
1
2
]
D、[
1
4
1
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(wx+
π
6
)(A>0,w>0)的最小正周期為π,且x∈[0,
π
2
]時(shí),f(x)的最大值為4,
(1)求A的值;
(2)求函數(shù)f(x)在[-π,0]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)幾何體的主視圖與左視圖均為邊長(zhǎng)為2的正三角形,其俯視圖是邊長(zhǎng)為2的正方形,則此幾何體的內(nèi)切球的表面積為( 。
A、12π
B、
25
3
π
C、
8
3
π
D、
4
3
π

查看答案和解析>>

同步練習(xí)冊(cè)答案