18.冪函數(shù)的圖象過點(diǎn)(5,$\sqrt{5}$),則它的單調(diào)遞增區(qū)間是( 。
A.[0,+∞)B.[-1,+∞)C.(-∞,+∞)D.(-∞,0)

分析 設(shè)出冪函數(shù)的解析式,用待定系數(shù)法求出函數(shù)解析式,再求函數(shù)的單調(diào)遞增區(qū)間.

解答 解:設(shè)冪函數(shù)的解析式為y=xa
根據(jù)其函數(shù)的圖象經(jīng)過點(diǎn)(5,$\sqrt{5}$),得5a=$\sqrt{5}$,
解得a=$\frac{1}{2}$,
所以y=${x}^{\frac{1}{2}}$=$\sqrt{x}$;
所以所求的函數(shù)單調(diào)遞增區(qū)間是[0,+∞).
故選:A.

點(diǎn)評(píng) 本題考查了冪函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=21n(x+1)-1nax在其定義域內(nèi)有且只有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值集合為( 。
A.|4|B.(-∞,4]C.(-∞,0)D.(-∞,0)∪{4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,若A=30°,a=2,b=2$\sqrt{3}$,則此三角形解的個(gè)數(shù)為( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.將(1-$\frac{1}{{x}^{2}}$)n(n∈N+)的展開式中x-4的系數(shù)記為an,則$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{2016}}$=$\frac{2015}{1008}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知α、β∈(0,π),且tanα,tanβ是方程x2+5x+6=0的兩根.
(1)求α+β;
(2)求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓C:(x-3)2+y2=4,M是圓C的圓心,Q是y軸上的動(dòng)點(diǎn),QA,QB分別切圓C于A,B兩點(diǎn)
(Ⅰ)若Q(0,2),求切線QA,QB的方程
(Ⅱ)求四邊形QAMB面積的最小值
(Ⅲ)若|AB|=$\frac{8\sqrt{2}}{3}$,求直線MQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在數(shù)列{an}(n=1,2,3,…)中,a1=4,且3,an,an+1成等差數(shù)列;
(1)設(shè)bn=an-3,證明:數(shù)列{bn}是等比數(shù)列;
(2)設(shè)cn=log2(2an-6),記數(shù)列{$\frac{1}{{c}_{2n-1}{c}_{2n+1}}$}的前n項(xiàng)和為Tn,證明:Tn$<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若△ABC邊BC,CA,AB上的高分別為ha、hb、hc,且ha:hb:hc=6:4:3,則tanC=-$\sqrt{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.?dāng)?shù)列{an}滿足:a0=8,an=$\frac{1}{2}$an-12,求{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案