【題目】政府為了穩(wěn)定房?jī)r(jià),決定建造批保障房供給社會(huì),計(jì)劃用萬(wàn)的價(jià)格購(gòu)得一塊建房用地,在該土地上建幢樓房供使用,每幢樓的樓層數(shù)相同且每層建套每套平方米,經(jīng)測(cè)算第層每平方米的建筑造價(jià)()滿足關(guān)系式(其中為整數(shù)且被整除) ,根據(jù)某工程師的個(gè)人測(cè)算可知,該小區(qū)只有每幢建層時(shí)每平方米平均綜合費(fèi)用才達(dá)到最低,其中每平方米.

(1)求的值;

(2)為使該小區(qū)平均每平方米的平均綜合費(fèi)用控制在元以內(nèi),每幢至少建幾層?至多造幾層?

【答案】150;(2)每幢至少建層,至多造.

【解析】

(1)根據(jù)平均綜合費(fèi)用公式,算出每幢建層時(shí)每平方米平均綜合費(fèi)用為,然后由該小區(qū)只有每幢建層時(shí)每平方米平均綜合費(fèi)用才達(dá)到最低,可知,解出不等式即可求出;

(2)(1)求出,根據(jù)已知令平均綜合費(fèi)用為,解不等式即可求出每幢至少建幾層,至多造幾層.

(1)設(shè)該小區(qū)每幢建層時(shí)每平方米平均綜合費(fèi)用為,則

,

又條件知,即,

所以,又因?yàn)?/span>為整數(shù)且被整除,

所以

(2)(1),所以

知,

所以,

因?yàn)?/span>,所以,

是正整數(shù),故

故為使該小區(qū)平均每平方米的平均綜合費(fèi)用控制在元以內(nèi),每幢至少建層,至多造

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長(zhǎng)為的正方形中,、分別為,邊上的中點(diǎn),現(xiàn)將點(diǎn)為軸旋轉(zhuǎn)至點(diǎn)的位置,使得為直二面角.

(1)證明:;

(2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若曲線在點(diǎn)處的切線與直線平行,求的值,并求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時(shí),若對(duì)任意,都有恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)),的導(dǎo)函數(shù),且.

1)求實(shí)數(shù)的值;

2)若函數(shù)處的切線經(jīng)過點(diǎn),求函數(shù)的極值;

3)若關(guān)于的不等式對(duì)于任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),現(xiàn)從高一學(xué)生中抽取人做調(diào)查,得到列聯(lián)表:

喜歡游泳

不喜歡游泳

合計(jì)

男生

40

女生

30

合計(jì)

100

且已知在個(gè)人中隨機(jī)抽取人,抽到喜歡游泳的學(xué)生的概率為.

1)請(qǐng)完成上面的列聯(lián)表;

2)根據(jù)列聯(lián)表的數(shù)據(jù),是否有的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有4名同學(xué)去參加校學(xué)生會(huì)活動(dòng),共有甲、乙兩類活動(dòng)可供參加者選擇,為增加趣味性,約定:每個(gè)人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪類活動(dòng),擲出點(diǎn)數(shù)為12的人去參加甲類活動(dòng),擲出點(diǎn)數(shù)大于2的人去參加乙類活動(dòng).

1)求這4個(gè)人中恰有2人去參加甲類活動(dòng)的概率;

2)用,分別表示這4個(gè)人中去參加甲、乙兩類活動(dòng)的人數(shù).,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)某款機(jī)器零件,因?yàn)橐缶缺容^高,所以需要對(duì)生產(chǎn)的一大批零件進(jìn)行質(zhì)量檢測(cè).首先由專家根據(jù)各種系數(shù)制定了質(zhì)量指標(biāo)值,從生產(chǎn)的大批零件中選取100件作為樣本進(jìn)行評(píng)估,根據(jù)評(píng)估結(jié)果作出如圖所示的頻率分布直方圖.

1)(。└鶕(jù)直方圖求及這100個(gè)零件的樣本平均數(shù)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示);

(ⅱ)以樣本估計(jì)總體,經(jīng)過專家研究,零件的質(zhì)量指標(biāo)值,試估計(jì)10000件零件質(zhì)量指標(biāo)值在內(nèi)的件數(shù);

2)設(shè)每個(gè)零件利潤(rùn)為元,質(zhì)量指標(biāo)值為,利潤(rùn)與質(zhì)量指標(biāo)值之間滿足函數(shù)關(guān)系.假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,試估算該批零件的平均利潤(rùn).(結(jié)果四舍五入,保留整數(shù))

參考數(shù)據(jù):,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列中,,且,,成等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

2)記為數(shù)列的前項(xiàng)和,是否存在正整數(shù),使得?若存在,求出的最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某外國(guó)語(yǔ)學(xué)校舉行的(高中生數(shù)學(xué)建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績(jī)分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎(jiǎng).按女生、男生用分層抽樣的方法抽取人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖如圖所示.

(Ⅰ)求的值,并計(jì)算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(Ⅱ)填寫下面的列聯(lián)表,并判斷在犯錯(cuò)誤的概率不超過的前提下能否認(rèn)為“獲獎(jiǎng)與女生、男生有關(guān)”.

女生

男生

總計(jì)

獲獎(jiǎng)

不獲獎(jiǎng)

總計(jì)

附表及公式:

其中,

查看答案和解析>>

同步練習(xí)冊(cè)答案