8.奇函數(shù)f(x)的定義域?yàn)镽,函數(shù)g(x)=x2+f(x-1)+f(x+1),若g(1)=4,則g(-1)的值為-2.

分析 由題意可得可得f(0)=0,結(jié)合g(1)=1+f(2)=4,求得f(2)=3,從而求得g(-1)=1+f(-2)+f(0)的值.

解答 解:∵函數(shù)g(x)=x2+f(x-1)+f(x+1)的定義域?yàn)镽,可得f(0)=0.
∵g(1)=1+f(0)+f(2)=1+f(2)=4,f(2)=3,
則g(-1)=1+f(-2)+f(0)=1-f(2)+0=1-3=-2,
故答案為:-2.

點(diǎn)評 本題主要考查函數(shù)的奇偶性的性質(zhì),求函數(shù)的值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.給出以下三個(gè)命題:
①若ab≤0,則a≤0,b≤0;
②在ABC中,若sinA=sinB,則A=B;
③在一元二次方程ax2+bx+c=0中,若b2-4ac>0,則方程有實(shí)數(shù)根.
其中原命題、逆命題、否命題、逆否命題全都是真命題的是( 。
A.B.C.D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(cosα,sinα),設(shè)$\overrightarrow{m}$=$\overrightarrow{a}$+t$\overrightarrow$(t∈R).
(1)若α=$\frac{π}{4}$,求|$\overrightarrow{m}$|最小值;
(2)若向量$\overrightarrow{a}$⊥$\overrightarrow$,且$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{m}$夾角的余弦值為$\frac{2}{3}$,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$sin(α+\frac{13π}{6})+cosα=-\frac{1}{3}$,則$cos(\frac{π}{6}-α)$=( 。
A.$-\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$-\frac{{\sqrt{3}}}{9}$D.$\frac{{\sqrt{3}}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若將函數(shù)y=8sin2x的圖象向左平移φ(φ>0)個(gè)單位長度,得到的函數(shù)圖象關(guān)于原點(diǎn)對稱,則cos4φ+sin4φ=( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.利用坐標(biāo)軸平移化簡下列曲線的方程,并指出新坐標(biāo)原點(diǎn)在原坐標(biāo)系中的坐標(biāo):
(1)x2+y2-6x+8y=0;
(2)x2+4x-3y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知圓x2+y2=r2(r>0)的內(nèi)接四邊形的面積的最大值為2r2,類比可得橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的內(nèi)接四邊形的面積的最大值為2ab.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=tanx+cotx的最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在區(qū)間[1,e]上任取實(shí)數(shù)a,在區(qū)間[0,1]上任取實(shí)數(shù)b,使函數(shù)f(x)=ax2+x+$\frac{1}{4}$b有兩個(gè)相異零點(diǎn)的概率是( 。
A.$\frac{1}{e-1}$B.$\frac{1}{2(e-1)}$C.$\frac{1}{4(e-1)}$D.$\frac{1}{8(e-1)}$

查看答案和解析>>

同步練習(xí)冊答案