【題目】已知函數(shù)f(x)=1+x﹣ + ﹣ ﹣…+ ﹣ + ,則下列結(jié)論正確的是( )
A.f(x)在(0,1)上恰有一個零點
B.f(x)在(0,1)上恰有兩個零點
C.f(x)在(﹣1,0)上恰有一個零點
D.f(x)在(﹣1,0)上恰有兩個零點
【答案】C
【解析】解:函數(shù)f(x)=1+x﹣ + ﹣ ﹣…+ ﹣ + ,
可得f′(x)=1﹣x+x2﹣x3+…+x2012﹣x2013+x2014
=(1﹣x)+x2(1﹣x)+…+x2012(1﹣x)+x2014
=(1﹣x)(1+x2+…+x2012)+x2014 ,
當(dāng)x<1時,1﹣x>0,f′(x)>0,
可得f(x)在(﹣∞,1)上遞增,
由f(0)=1>0,可得f(1)>0,即有f(x)在(0,1)無零點,則A,B均錯;
由f(﹣1)=1﹣1﹣ ﹣ ﹣…﹣ <0,又f(x)在(﹣1,0)遞增,
由零點存在定理,可得f(x)在(﹣1,0)上恰有一個零點.
則C正確,D錯誤.
故選:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是以AB為直徑的圓,點C在圓上,在△ABC和△ACD中,∠ADC=90°,∠BAC=∠CAD,DC的延長線與AB的延長線交于點E.若EB=6,EC=6 ,則BC的長為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、為曲線:上兩點,與的橫坐標(biāo)之和為.
(1)求直線的斜率;
(2)為曲線上一點,在處的切線與直線平行,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系原點O為極點,以x軸非負(fù)半軸為極軸,以平面直角坐標(biāo)系的長度單位為長度單位建立極坐標(biāo)系.已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ
(Ⅰ) 求曲線C的直角坐標(biāo)方程;
(Ⅱ) 設(shè)直線l與曲線C相交于A,B兩點,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知焦點在x軸的橢圓的離心率與雙曲線3x2-y2=3的離心率互為倒數(shù),且過點,求:(1)求橢圓方程;
(2)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點M,N,點,有|MP|=|NP|,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA,OB是兩條互相垂直的筆直公路,半徑OA=2km的扇形AOB是某地的一名勝古跡區(qū)域.當(dāng)?shù)卣疄榱司徑庠摴袍E周圍的交通壓力,欲在圓弧AB上新增一個入口P(點P不與A,B重合),并新建兩條都與圓弧AB相切的筆直公路MB,MN,切點分別是B,P.當(dāng)新建的兩條公路總長最小時,投資費用最低.設(shè)∠POA=,公路MB,MN的總長為.
(1)求關(guān)于的函數(shù)關(guān)系式,并寫出函數(shù)的定義域;
(2)當(dāng)為何值時,投資費用最低?并求出的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若曲線在點處的切線經(jīng)過點,求a的值;
(2)若在內(nèi)存在極值,求a的取值范圍;
(3)當(dāng)時,恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex(e=2.71828…),g(x)為其反函數(shù).
(1)求函數(shù)F(x)=g(x)﹣ax的單調(diào)區(qū)間;
(2)設(shè)直線l與f(x),g(x)均相切,切點分別為(x1 , f(x1)),(x2 , f(x2)),且x1>x2>0,求證:x1>1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com