【題目】已知函數(shù)
(1)若曲線在點處的切線經(jīng)過點,求a的值;
(2)若在內(nèi)存在極值,求a的取值范圍;
(3)當時,恒成立,求a的取值范圍.
【答案】(1) ;(2) ;(3).
【解析】
(1)根據(jù)導數(shù)幾何意義得切線斜率,根據(jù)兩點斜率公式列方程,解得的值;(2)先根據(jù)極值定義轉(zhuǎn)化為在內(nèi)有解且在內(nèi)有正有負,再根據(jù)函數(shù)單調(diào)性列等價不等式組,解得的取值范圍;(3)先分離變量,轉(zhuǎn)化為求對應函數(shù)最值,再根據(jù)導數(shù)研究對應函數(shù)單調(diào)性,進而確定函數(shù)最值,即得結(jié)果.
解:.
(1),.
因為在處的切線過,
所以.
(2)在內(nèi)有解且在內(nèi)有正有負.
令.
由,得在內(nèi)單調(diào)遞減,
所以.
(3)因為時恒成立,
所以.
令,
則.
令,
由,
得在內(nèi)單調(diào)遞減,又,
所以時,
即,單調(diào)遞增,
時,
即,單調(diào)遞減.
所以在內(nèi)單調(diào)遞增,
在內(nèi)單調(diào)遞減,
所以.
所以.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),在點M(1,f(1))處的切線方程為9x+3y-10=0,求
(1)實數(shù)a,b的值;
(2)函數(shù)f(x)的單調(diào)區(qū)間以及在區(qū)間[0,3]上的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=1+x﹣ + ﹣ ﹣…+ ﹣ + ,則下列結(jié)論正確的是( )
A.f(x)在(0,1)上恰有一個零點
B.f(x)在(0,1)上恰有兩個零點
C.f(x)在(﹣1,0)上恰有一個零點
D.f(x)在(﹣1,0)上恰有兩個零點
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知m、n∈R+ , f(x)=|x+m|+|2x﹣n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值為2,證明:4(m2+ )的最小值為8.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)的定義域D={x|x≠0},且滿足對于任意x1,x2∈D.有f(x1·x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判斷f(x)的奇偶性并證明;
(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合M={(x,y)|y=f(x)},若對于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點集”.給出下列四個集合:
①M={ };
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex﹣2}.
其中是“垂直對點集”的序號是( )
A.①②
B.②③
C.①④
D.②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,為一臺冷軋機的示意圖,冷軋機由若干對軋輥組成,帶鋼從一端輸入,經(jīng)過各對軋輥逐步減薄后輸出.(軋鋼過程中,鋼帶寬度不變,且不考慮損耗)
一對對軋輥的減薄率.
(1)輸入鋼帶的厚度為,輸出鋼帶的厚度為,若每對軋輥的減薄率不超過,問冷軋機至少需要安裝幾對軋輥?
(2)已知一臺冷軋機共有4對減薄率為的軋輥,所有軋輥周長均為,若第對軋輥有缺陷,每滾動一周在剛帶上壓出一個疵點,在冷軋機輸出的剛帶上,疵點的間距為,易知,為了便于檢修,請計算,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在等比數(shù)列{an}中,a2=3,a5=81,bn=1+2log3an .
(1)求數(shù)列{bn}的前n項的和;
(2)已知數(shù)列 的前項的和為Sn , 證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設(shè)二面角D﹣AE﹣C為60°,AP=1,AD= ,求三棱錐E﹣ACD的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com