(本小題滿(mǎn)分12分)
已知函數(shù)
(Ⅰ)判斷函數(shù)的奇偶性;
(Ⅱ)證明:函數(shù)在區(qū)間上為增函數(shù).
⑴為偶函數(shù).⑵見(jiàn)解析.
【解析】本試題主要是考查了函數(shù)的奇偶性和單調(diào)性的綜合運(yùn)用
(1)先判定定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng),然后求解f(-x)與f(x)的關(guān)系式得到結(jié)論。
(2)設(shè)出變量,然后作差,變形定號(hào),下結(jié)論。
解:⑴,且
.
故為偶函數(shù).
⑵設(shè),則
∴函數(shù)在區(qū)間上為增函數(shù).
(21)【題文】(本小題滿(mǎn)分12分)
對(duì)于每個(gè)實(shí)數(shù),設(shè)取三個(gè)函數(shù)中的最小值,用分段函數(shù)寫(xiě)出的解析式,并求的最大值.
【答案】,.
【解析】本試題主要是考查了分段函數(shù)的解析式的求解以及函數(shù)的最值的綜合運(yùn)用。
利用已知函數(shù)解析式在統(tǒng)一坐標(biāo)系下左圖,然后找到所要的函數(shù)的及誒西施,進(jìn)而得到結(jié)論。
解:在統(tǒng)一坐標(biāo)系下作出三個(gè)函數(shù)的圖像,可知
,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿(mǎn)分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009湖南卷文)(本小題滿(mǎn)分12分)
為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類(lèi),這三類(lèi)工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類(lèi)別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿(mǎn)分12分)
某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤(rùn)與投資單位是萬(wàn)元)
(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫(xiě)出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com