5.已知點列An(xn,0),n∈N*,其中x1=0,x2=1.A3是線段A1A2的中點,A4是線段A2A3的中點,…,An+2是線段AnAn+1的中點,…設(shè)an=xn+1-xn
(Ⅰ)寫出xn與xn-1、xn-2(n≥3)之間的關(guān)系式并計算a1,a2,a3;
(Ⅱ)猜想數(shù)列{an}的通項公式,并用數(shù)學(xué)歸納法加以證明.

分析 (Ⅰ)根據(jù)題意,An是線段An-2An-1的中點,可得xn與xn-1、xn-2之間的關(guān)系式,并令n=1,2,3求出答案即可.
(Ⅱ)根據(jù)(Ⅰ)的計算結(jié)果,猜想的通{an}項公式,用數(shù)學(xué)歸納法的證明步驟直接證明即可.

解答 解:(Ⅰ)${x_n}=\frac{{{x_{n-1}}+{x_{n-2}}}}{2}(n≥3)$…(2分)${a_1}=1,{a_2}=-\frac{1}{2},{a_3}=\frac{1}{4}$.…(5分)
(Ⅱ)猜想${a_n}={(-\frac{1}{2})^{n-1}}$…(6分)
證明:①當n=1時,a1=$(-\frac{1}{2})^{1-1}$=1
∴當n=1時,${a_n}={(-\frac{1}{2})^{n-1}}$成立.…(7分)
②假設(shè)當n=k時${a_k}={(-\frac{1}{2})^{k-1}}$成立.
則當n=k+1時,${a_{k+1}}={x_{k+2}}-{x_{k+1}}=\frac{{{x_{k+1}}+{x_k}}}{2}-{x_{k+1}}=-\frac{1}{2}({x_{k+1}}-{x_k})=-\frac{1}{2}{a_k}$=$-\frac{1}{2}•{(-\frac{1}{2})^{k-1}}={(-\frac{1}{2})^k}={(-\frac{1}{2})^{(k+1)-1}}$,
∴當n=k+1時,公式成立.…(11分)
綜上①②得,對任意n∈N*,公式${a_n}={(-\frac{1}{2})^{n-1}}$成立.…(12分)

點評 本題考查數(shù)列遞推關(guān)系式以及通項公式的應(yīng)用,數(shù)學(xué)歸納法的證明方法的應(yīng)用,考查計算能力與邏輯推理能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.(理)籃球運動員在比賽中每次罰球命中得1分,罰不中得0分.已知某運動員罰球命中的概率為0.7,則他罰球3次的得分ξ的均值為2.1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(Ⅰ)用分析法證明:$\sqrt{8}$+$\sqrt{7}$>$\sqrt{5}$+$\sqrt{10}$.
(Ⅱ)設(shè)a,b,c均為正實數(shù),且ab+bc+ca=1.求證:a+b+c≥$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.第47屆聯(lián)合國大會于1993年1月18日通過193號決議,確定自1993年起,每年的3月22日為“世界水日”,依次推動對水資源進行進行綜合性統(tǒng)籌規(guī)劃和管理,加強水資源保護,解決日益嚴重的水問題.某研究機構(gòu)為了了解各年齡層的居民對“世界水日”的了解程度,隨機抽取了300名年齡在[10,60]的公民進行調(diào)查,所得結(jié)果統(tǒng)計為如圖的頻率分布直方圖.
(Ⅰ)求抽取的年齡在[30,40)內(nèi)的居民人數(shù);
(Ⅱ)若按照分層抽樣的方法從年齡在[10,20)、[50,60]的居民中抽取6人進行知識普及,并在知識普及后再抽取2人進行測試,求進行測試的居民中至少有1人的年齡在[50,60]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知隨機變量ξ的分布列為P(ξ=K)=$\frac{1}{{2}^{K}}$,k=1,2,…,則P(2<ξ≤4)等于( 。
A.$\frac{3}{16}$B.$\frac{1}{4}$C.$\frac{1}{16}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.甲、乙、丙三名高二學(xué)生計劃利用今年“五一”三天小長假在附近的五個景點(五個景點分別是:荊州古城、三峽大壩、古隆中、明顯陵、西游記公園)每人彼此獨立地選三個景點游玩.其中甲同學(xué)必選明顯陵,不選西游記公園,另從其余中隨機任選兩個;乙、丙兩名同學(xué)從五個景點中隨機任選三個.
(1)求甲同學(xué)選中三峽大壩景點且乙同學(xué)未選中三峽大壩景點的概率;
(2)用X表示甲、乙、丙選中三峽大壩景點的人數(shù)之和,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知a,b,c為正實數(shù),求證:(a2+2)(b2+2)(c2+2)≥3(a+b+c)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f0(x)=xsinx,其中x∈R,記fn(x)為fn-1(x)的導(dǎo)函數(shù),n∈N*
(1)求f1(x),f2(x),f3(x);
(2)猜想fn(x)(n∈N*)的解析式并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知復(fù)數(shù)z滿足z=$\frac{5}{1-2i}$,則z•$\overline z$=( 。
A.2B.$\sqrt{5}$C.3D.5

查看答案和解析>>

同步練習(xí)冊答案