【題目】我們稱滿足: )的數(shù)列為“級(jí)夢(mèng)數(shù)列”.

(1)若是“級(jí)夢(mèng)數(shù)列”且.求: 的值;

(2)若是“級(jí)夢(mèng)數(shù)列”且滿足, ,求的最小值;

(3)若是“0級(jí)夢(mèng)數(shù)列”且,設(shè)數(shù)列的前項(xiàng)和為.證明: ).

【答案】(1) , ;(2);(3)見解析。

【解析】試題分析:(1根據(jù)遞推關(guān)系式,可求數(shù)列前四項(xiàng)的值,代入所求式子即可求解;(2)根據(jù)遞推關(guān)系式,采用裂項(xiàng)相消的方法可化簡(jiǎn)條件,然后寫出構(gòu)造均值不等式即可求出其最小值;(3通過,利用累加法求出,通過兩邊同除可得,累加求的范圍從而得出結(jié)論.

試題解析:

1是“1級(jí)夢(mèng)數(shù)列”,所以,當(dāng)n=2,3,4,時(shí),代入可求得;

2)由條件可得: ,

解得

當(dāng)且僅當(dāng)時(shí)取等號(hào).

3根據(jù)可得

又由

累加得: ,

所以

由①②得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

若曲線在點(diǎn)處的切線經(jīng)過點(diǎn),求實(shí)數(shù)的值;

若函數(shù)在區(qū)間上單調(diào),求實(shí)數(shù)的取值范圍;

設(shè),若對(duì), ,使得成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,PA=PC=5,PB=4,AB=BC=2 ,∠ACB=30°.

(1)求證:AC⊥PB;
(2)求三棱錐P﹣ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(1)當(dāng)時(shí),求證

(2)對(duì)任意,存在,使成立,求的取值范圍.(其中是自然對(duì)數(shù)的底數(shù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

1)求曲線在點(diǎn)處的切線方程;

2)當(dāng)時(shí),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 的導(dǎo)函數(shù).

Ⅰ)求的極值;

Ⅱ)若時(shí)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心在直線y=4x上,且與直線l:x+y﹣2=0相切于點(diǎn)P(1,1).
(1)求圓的方程;
(2)直線kx﹣y+3=0與該圓相交于A、B兩點(diǎn),若點(diǎn)M在圓上,且有向量 (O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖給出的是計(jì)算 的值的一個(gè)程序框圖,判斷其中框內(nèi)應(yīng)填入的條件是(

A.i>10
B.i<10
C.i>20
D.i<20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在體積為72的直三棱柱ABC﹣A1B1C1中,AB=3,AC=4,AA1=12.

(1)求角∠BAC的大。
(2)若該三棱柱的六個(gè)頂點(diǎn)都在球O的球面上,求球O的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案