【題目】已知非空集合A,B同時滿足以下四個條件: ①A∪B={1,2,3,4,5};
②A∩B=;
③card(A)A;
④card(B)B.
注:其中card(A)、card(B)分別表示A、B中元素的個數(shù).
如果集合A中只有一個元素,那么A=;
如果集合A中有3個元素,請寫出一對滿足條件的集合A,B: .
【答案】{2}、{3}、{4}、{5};A={1,2,4},B={3,5}或A={1,2,5},B={3,4},或A={2,4,5},B={1,3}
【解析】解:如果集合A中只有一個元素,
則card(A)=1,
由③card(A)A得:1A,
可得,A={2}、{3}、{4}、{5};
如果集合A中有3個元素,則3A,
可得A={1,2,4},{1,2,5},{1,4,5},{2,4,5},
由A∪B={1,2,3,4,5},可得B中至少含2個元素,
且A∩B=,可得B為二元集,
card(B)B,可得2B,
可得B={3,5},(3,4},{1,3}.
則A={1,2,4},B={3,5};或A={1,2,5},B={3,4};
或A={2,4,5},B={1,3}.
所以答案是:{2}、{3}、{4}、{5};
A={1,2,4},B={3,5}或A={1,2,5},B={3,4};或A={2,4,5},B={1,3}.
【考點精析】解答此題的關鍵在于理解交、并、補集的混合運算的相關知識,掌握求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結合的思想方法.
科目:高中數(shù)學 來源: 題型:
【題目】知全集U=R,集合M={x|x2﹣4≤0},則UM=( )
A.{x|﹣2<x<2}
B.{x|﹣2≤x≤2}
C.{x|x<﹣2或x>2}
D.{x|x≤﹣2或x≥2}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】調(diào)查了某地若干戶家庭的年收入x(單位:萬元)和年飲食支出y(單位:萬元),調(diào)查顯示年收入x與年飲食支出y具有線性相關關系,并由調(diào)查數(shù)據(jù)得到y(tǒng)對x的回歸直線方程:y=0.354x+0.321.由回歸直線方程可知,家庭年收入每增加1萬元,年飲食支出平均增加萬元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】把數(shù)列{2n+1}(n∈N*)依次按第一個括號一個數(shù),第二個括號兩個數(shù),第三個括號三個數(shù),第四個括號四個數(shù),第五個括號一個數(shù),…循環(huán),分別:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),…,則第120個括號內(nèi)各數(shù)之和為( )
A.2312
B.2392
C.2472
D.2544
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知α,β是兩個平面,m,n是兩條直線,則下列四個結論中,正確的有(填寫所有正確結論的編號) ①若m∥α,n∥α,則m∥n;
②若m⊥α,n∥α,則m⊥n;
③若a∥β,mα,則m∥β;
④若m⊥n.m⊥α,n∥β,則α⊥β
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com