已知橢圓C:(a>b>0),則稱以原點為圓心,r=的圓為橢圓C的“知己圓”。
(Ⅰ)若橢圓過點(0,1),離心率e=;求橢圓C方程及其“知己圓”的方程;
(Ⅱ)在(Ⅰ)的前提下,若過點(0,m)且斜率為1的直線截其“知己圓”的弦長為2,求m的值;
(Ⅲ)討論橢圓C及其“知己圓”的位置關(guān)系.
(1)(2)  
(3)當(dāng)r=c<b時,該橢圓C的“知己圓”與橢圓沒有公共點,圓在橢圓內(nèi);  12分
當(dāng)r=c=b時,該橢圓C的“知己圓”與橢圓有兩個公共點,交點是(0,1)和(0,-1);
當(dāng)r=c>b時,該橢圓C的“知己圓”與橢圓有四個公共點。

試題分析:(Ⅰ)∵ 橢圓C過點(0,1),由橢圓性質(zhì)可得:b=1;
又∵橢圓C的離心率e=,即,且       2分
∴ 解得
∴所求橢圓C的方程為:                         4分
又∵
∴ 由題意可得橢圓C的“知己圓”的方程為:            6分
(Ⅱ)過點(0,m)且斜率為1的直線方程為y="x+m" 即:x-y+m=0
設(shè)圓心到直線的距離為d,則d=           8分
∴d=    解得:m=                          10分
(Ⅲ)∵稱以原點為圓心,r=的圓為橢圓C的“知己圓”,此時r=c
∴ 當(dāng)r=c<b時,該橢圓C的“知己圓”與橢圓沒有公共點,圓在橢圓內(nèi);  12分
當(dāng)r=c=b時,該橢圓C的“知己圓”與橢圓有兩個公共點,交點是(0,1)和(0,-1);
當(dāng)r=c>b時,該橢圓C的“知己圓”與橢圓有四個公共點。            14分
點評:主要是考查了橢圓的幾何性質(zhì)以及新定義的理解和運(yùn)用,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的左焦點為,左、右頂點分別為,上頂點為,過三點作圓  
(Ⅰ)若線段是圓的直徑,求橢圓的離心率;
(Ⅱ)若圓的圓心在直線上,求橢圓的方程;
(Ⅲ)若直線交(Ⅱ)中橢圓于,交軸于,求的最大值  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點是直線被橢圓所截得的線段中點,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)橢圓的四個頂點A、B、C、D, 若菱形ABCD的內(nèi)切圓恰好經(jīng)過橢圓的焦點, 則橢圓的離心率為         __  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左、右焦點分別為,
上頂點為,在軸負(fù)半軸上有一點,滿足,且

(Ⅰ)求橢圓的離心率;
(Ⅱ)是過三點的圓上的點,到直線的最大距離等于橢圓長軸的長,求橢圓的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點作斜率為的直線與橢圓交于兩點,線段的中垂線與軸相交于點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,如圖,已知橢圓C的上、下頂點分別為AB,點P在橢圓C上且異于點A、B,直線APPB與直線ly=-2分別交于點M、N.

(1)設(shè)直線AP、PB的斜率分別為k1,k2,求證:k1·k2為定值;
(2)求線段MN長的最小值;
(3)當(dāng)點P運(yùn)動時,以MN為直徑的圓是否經(jīng)過某定點?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的焦距為(   )
A. 10B. 5C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)設(shè)橢圓的左、右焦點分別為,上頂點為,過點垂直的直線交軸負(fù)半軸于點,且
(1)求橢圓的離心率; (2)若過、三點的圓恰好與直線相切,
求橢圓的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線 和橢圓,則直線和橢圓相交有(   )
A.兩個交點B.一個交點C.沒有交點D.無法判斷

查看答案和解析>>

同步練習(xí)冊答案