某工廠有名工人,現(xiàn)接受了生產(chǎn)臺型高科技產(chǎn)品的總?cè)蝿?wù).已知每臺型產(chǎn)品由個(gè)型裝置和個(gè)型裝置配套組成,每個(gè)工人每小時(shí)能加工個(gè)型裝置或個(gè)型裝置.現(xiàn)將工人分成兩組同時(shí)開始加工,每組分別加工一種裝置(完成自己的任務(wù)后不再支援另一組).設(shè)加工型裝置的工人有人,他們加工完型裝置所需時(shí)間為,其余工人加工完型裝置所需時(shí)間為(單位:小時(shí),可不為整數(shù)).
(1)寫出、的解析式;
(2)寫出這名工人完成總?cè)蝿?wù)的時(shí)間的解析式;
(3)應(yīng)怎樣分組,才能使完成總?cè)蝿?wù)用的時(shí)間最少?
(1),(,);
(2);
(3)加工型裝置,型裝置的人數(shù)分別為、或、.
解析試題分析:(1)根據(jù)定義求出函數(shù)與的解析式,并求出函數(shù)的定義域;(2)對兩個(gè)函數(shù)與作差,比較與的大小,根據(jù)相應(yīng)的的取值范圍確定的解析式;(3)考查函數(shù)在每段定義域上的單調(diào)性,并求出函數(shù)相應(yīng)的最小值,從而確定加工兩種不同的零件的人數(shù).
試題解析:(1)由題意知,需加工型裝置4000個(gè),加工型裝置3000個(gè),所用工人分別為人和()
人,∴,,
即,(,) 4分
(2),
∵,∴,
當(dāng)時(shí),,,,
當(dāng)時(shí),,,,
9分
(3)完成總?cè)蝿?wù)所用時(shí)間最少即求的最小值,
當(dāng)時(shí),遞減,∴,
∴,此時(shí), 11分
當(dāng)時(shí),遞增,∴,
∴,此時(shí), 13分
∴,
∴加工G型裝置,H型裝置的人數(shù)分別為86、130或87、129. 14分
考點(diǎn):1.分段函數(shù);2.分段函數(shù)的單調(diào)性與最值
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
集合A是由適合以下性質(zhì)的函數(shù)構(gòu)成的:對于定義域內(nèi)任意兩個(gè)不相等的實(shí)數(shù),都有.
(1)試判斷=及是否在集合A中,并說明理由;
(2)設(shè)ÎA且定義域?yàn)?0,+¥),值域?yàn)?0,1),,試寫出一個(gè)滿足以上條件的函數(shù)的解析式,并給予證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(Ⅰ)若函數(shù)在上至少有一個(gè)零點(diǎn),求的取值范圍;
(Ⅱ)若函數(shù)在上的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)增函數(shù)
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù),其中.若函數(shù)僅在處有極值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
統(tǒng)計(jì)表明:某種型號的汽車在勻速行駛中每小時(shí)的耗油量(升)關(guān)于行駛速度(千米/每小時(shí))的函數(shù)解析式可以表示為,已知甲、乙兩地相距100千米.
(1)當(dāng)汽車以40千米/小時(shí)的速度行駛時(shí),從甲地到乙地要耗油多少升?
(2)當(dāng)汽車以多大速度行駛時(shí),從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中是自然對數(shù)的底數(shù),.
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若,求的單調(diào)區(qū)間;
(3)若,函數(shù)的圖象與函數(shù)的圖象有3個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某跳水運(yùn)動員在一次跳水訓(xùn)練時(shí)的跳水曲線為如圖所示的拋物線一段,已知跳水板長為2m,跳水板距水面的高為3m,=5m,=6m,為安全和空中姿態(tài)優(yōu)美,訓(xùn)練時(shí)跳水曲線應(yīng)在離起跳點(diǎn)m()時(shí)達(dá)到距水面最大高度4m,規(guī)定:以為橫軸,為縱軸建立直角坐標(biāo)系.
(1)當(dāng)=1時(shí),求跳水曲線所在的拋物線方程;
(2)若跳水運(yùn)動員在區(qū)域內(nèi)入水時(shí)才能達(dá)到壓水花的訓(xùn)練要求,求達(dá)到壓水花的訓(xùn)練要求時(shí)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),.
⑴ 求不等式的解集;
⑵ 如果關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com