2.已知命題p:?x∈R,log2(3x+1)≤0,則(  )
A.¬p:?x∈R,log2(3x+1)>0B.¬p:?x∈R,log2(3x+1)>0
C.¬p:?x∈R,log2(3x+1)≤0D.¬p:?x∈R,log2(3x+1)≤0

分析 根據(jù)特稱命題的否定是全稱命題進(jìn)行判斷即可.

解答 解:命題是特稱命題,
則命題的否定是全稱命題,
即¬p:?x∈R,log2(3x+1)>0,
故選:B

點(diǎn)評(píng) 本題主要考查含有量詞的命題的否定,根據(jù)全稱命題的否定是特稱命題,特稱命題的否定是全稱命題是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,則f(3)的值等于-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知過點(diǎn)M(-2,1)的直線l與x,y軸正半軸分別交與A、B兩點(diǎn),且S△ABO=$\frac{1}{2}$,求直線l的方程.(結(jié)果用直線的一般方程表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,則f(f(-4))=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知偶函數(shù)f(x)的定義域?yàn)椋?∞,0)∪(0,+∞),且對(duì)任意正實(shí)數(shù)x1,x2(x1≠x2)恒有(x1-x2)[f(x1)-f(x2)]>0,則一定有( 。
A.f(3)>f(-3)B.f(-3)>f(-5)C.f(-30.3)>f(0.33D.f(log32)>f(-log23)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在三棱柱ABC-A1B1C1中,底面△ABC是邊長(zhǎng)為2的等邊三角形,過A1C作平面A1CD平行于BC1,交AB于D點(diǎn).
(1)求證:CD⊥AB;
(2)若四邊形BCC1B1是正方形,且${A_1}D=\sqrt{5}$,求二面角D-A1C-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點(diǎn)P1(a1,b1),P(a2,b2),…Pn(an,bn)(n∈N*)在函數(shù)y=log${\;}_{\frac{1}{2}}$x的圖象上.
(1)若數(shù)列{bn}是等差數(shù)列,求證:數(shù)列{an}是等比數(shù)列;
(2)若數(shù)列{an}的前n項(xiàng)和Sn=1-2-n,過點(diǎn)Pn,Pn+1的直線與兩坐標(biāo)軸所圍圖形的面積為cn,求最小的實(shí)數(shù)t,使得對(duì)任意的n∈N*,cn≤t恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知“x>k”是“$\frac{3}{|x|}$<1”的充分不必要條件,則k的取值范圍是( 。
A.[3,+∞)B.[2,+∞)C.(3,+∞)D.(一∞,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)a>0,若函數(shù)y=$\frac{8}{x}$,當(dāng)x∈[a,2a]時(shí),y的范圍為[$\frac{a}{4}$,2],則a的值為( 。
A.2B.4C.6D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案