Processing math: 89%
14.已知點(diǎn)P1(a1,b1),P(a2,b2),…Pn(an,bn)(n∈N*)在函數(shù)y=log12x的圖象上.
(1)若數(shù)列{bn}是等差數(shù)列,求證:數(shù)列{an}是等比數(shù)列;
(2)若數(shù)列{an}的前n項(xiàng)和Sn=1-2-n,過(guò)點(diǎn)Pn,Pn+1的直線與兩坐標(biāo)軸所圍圖形的面積為cn,求最小的實(shí)數(shù)t,使得對(duì)任意的n∈N*,cn≤t恒成立.

分析 (1)設(shè)等差數(shù)列{bn}的公差為d,則Pn(an,bn)(n∈N*)在函數(shù)y=log12x的圖象上.n=log12an,可得an=12n.計(jì)算an+1an為常數(shù)即可得出.
(2)由Sn=1-2-n,可得a1=121=12.n≥2時(shí),an=Sn-Sn-1=12n.可得bn=n.由Pn12nn,Pn+112n+1n+1.過(guò)點(diǎn)Pn,Pn+1的直線方程為:ynn+1n=x12n12n+112n,可得:Ann+22n+10,Bn(0,n+2).cn=12|OA||OB|.判定數(shù)列{cn}單調(diào)性即可得出.

解答 (1)證明:設(shè)等差數(shù)列{bn}的公差為d,則Pn(an,bn)(n∈N*)在函數(shù)y=log12x的圖象上.
n=log12an,∴an=12n
an+1an=12n+1n=124ao4c2k對(duì)n∈N*恒成立,
得到數(shù)列{an}是等比數(shù)列.
(2)解:由Sn=1-2-n,可得a1=121=12.n≥2時(shí),an=Sn-Sn-1=1-2-n-(1-2-(n-1))=12n
n=log12an=log1212n=n,
∴Pn12nn,Pn+112n+1n+1.過(guò)點(diǎn)Pn,Pn+1的直線方程為:ynn+1n=x12n12n+112n,化為:y=n-2(2nx-1).
可得:Ann+22n+10,Bn(0,n+2).cn=12|OA||OB|=n+222n+2
由cn-cn+1=n+222n+2n+322n+3=n2+2n12n+2>0.∴數(shù)列{cn}單調(diào)遞減,
使得對(duì)任意的n∈N*,cn≤t恒成立,則t≥c1=98
∴t的最小值為98

點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、直線方程、數(shù)列的單調(diào)性、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若x,y∈R,則“x>y”是“x2>y2”的既不充分也不必要條件.(從“充要、充分不必要不充分、必要不充分、既不充分也不必要”四種關(guān)系中選擇一個(gè)填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=ax-lnx,(a∈R),
(1)是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),函數(shù)f(x)的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由;
(2)當(dāng)x∈(0,e]時(shí),證明:e2x2-52x>(x+1)lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知命題p:?x∈R,log2(3x+1)≤0,則( �。�
A.¬p:?x∈R,log2(3x+1)>0B.¬p:?x∈R,log2(3x+1)>0
C.¬p:?x∈R,log2(3x+1)≤0D.¬p:?x∈R,log2(3x+1)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.ab6(a<b)=(b-a)3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)橢圓C:x2a2+y22=1(a>b>0)的離心率e=32,且過(guò)點(diǎn)A(2,0),O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)若過(guò)點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A、B,且OA⊥OB,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.從一批蘋(píng)果中隨機(jī)抽取100個(gè)作為樣本,其重量(單位:克)的頻數(shù)分布表如下:
分組(重量)[75,85)[85,95)[95,105)[105,115)
頻數(shù)(個(gè))15303520
(1)在頻率分布直方圖中,求分組重量在[85,95)對(duì)應(yīng)小矩形的高;
(2)利用頻率估計(jì)這批蘋(píng)果重量的平均數(shù).
(3)用分層抽樣的方法從重量在[85,95)和[105,115)的蘋(píng)果中抽取5個(gè),從這5個(gè)蘋(píng)果任取2個(gè),求重量在這兩個(gè)組中各有1個(gè)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2.將△ABD沿AB折起,使得面ABD⊥面ABC,如圖二,E為AC的中點(diǎn)
(Ⅰ)求證:BD⊥AC;
(Ⅱ)求△ADC的面積;
(Ⅲ)求三棱錐A-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知梯形CEPD如圖(1)所示,其中PD=8,CE=6,A為線段PD的中點(diǎn),四邊形ABCD為正方形,現(xiàn)沿AB進(jìn)行折疊,使得平面PABE⊥平面ABCD,得到如圖(2)所示的幾何體.已知當(dāng)點(diǎn)F滿足AF=λ\overrightarrow{AB}(0<λ<1)時(shí),平面DEF⊥平面PCE,則λ的值為(  )
A.\frac{1}{2}B.\frac{2}{3}C.\frac{3}{5}D.\frac{4}{5}

查看答案和解析>>

同步練習(xí)冊(cè)答案