精英家教網 > 高中數學 > 題目詳情
11.已知“x>k”是“$\frac{3}{|x|}$<1”的充分不必要條件,則k的取值范圍是( 。
A.[3,+∞)B.[2,+∞)C.(3,+∞)D.(一∞,-3]

分析 根據充分條件和必要條件的定義結合不等式的關系進行轉化求解即可.

解答 解:由$\frac{3}{|x|}$<1得|x|>3,得x>3或x<-3,
若“x>k”是“$\frac{3}{|x|}$<1”的充分不必要條件,
則k≥3,
則實數k的取值范圍是[3,+∞),
故選:A

點評 本題主要考查充分條件和必要條件的應用,根據不等式的關系進行轉化是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

1.點P(2,4)關于直線x+y+1=0的對稱點的坐標為( 。
A.(5,-3)B.(3,-5)C.(-5,3)D.(-5,-3)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.已知命題p:?x∈R,log2(3x+1)≤0,則( 。
A.¬p:?x∈R,log2(3x+1)>0B.¬p:?x∈R,log2(3x+1)>0
C.¬p:?x∈R,log2(3x+1)≤0D.¬p:?x∈R,log2(3x+1)≤0

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.設橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,且過點A(2,0),O為坐標原點.
(1)求橢圓C的方程;
(2)若過點M(0,2)的直線l與橢圓C交于不同的兩點A、B,且OA⊥OB,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.從一批蘋果中隨機抽取100個作為樣本,其重量(單位:克)的頻數分布表如下:
分組(重量)[75,85)[85,95)[95,105)[105,115)
頻數(個)15303520
(1)在頻率分布直方圖中,求分組重量在[85,95)對應小矩形的高;
(2)利用頻率估計這批蘋果重量的平均數.
(3)用分層抽樣的方法從重量在[85,95)和[105,115)的蘋果中抽取5個,從這5個蘋果任取2個,求重量在這兩個組中各有1個的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知函數f(x)=(x-2)ex
(I)求f(x)的單調區(qū)間;
(II)函數g(x)=ax2-2ax,若對一切x∈(2,+∞)有f(x)≥g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2.將△ABD沿AB折起,使得面ABD⊥面ABC,如圖二,E為AC的中點
(Ⅰ)求證:BD⊥AC;
(Ⅱ)求△ADC的面積;
(Ⅲ)求三棱錐A-BDE的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知三棱錐P-ABC的三條側棱兩兩互相垂直,且AB=$\sqrt{5}$,BC=$\sqrt{7}$,AC=2,則此三棱錐的外接球的體積為( 。
A.$\frac{8}{3}$πB.$\frac{8\sqrt{2}}{3}$πC.$\frac{16}{3}$πD.$\frac{32}{3}$π

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.函數f(x)=x3+x-2有 ( 。﹤零點.
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案