14.設(shè)定義在R上的奇函數(shù)f(x)滿(mǎn)足f(x)=x2-4(x>0),則f(x)>0的解集為( 。
A.(-2,2)B.(-4,4)C.(0,2)∪(4,+∞)D.(-2,0)∪(2,+∞)

分析 根據(jù)奇函數(shù)的性質(zhì)和題意求出解析式,再對(duì)x進(jìn)行分類(lèi)利用二次不等式的解法求解不等式.

解答 解:∵函數(shù)f(x)是奇函數(shù),
令x<0,則-x>0,
∴f(-x)=(-x)2-4=x2-4=-f(x),
∴f(x)=-x2+4,
則$f(x)=\left\{\begin{array}{l}{{x}^{2}-4,x>0}\\{0,x=0}\\{-{x}^{2}+4,x<0}\end{array}\right.$,
當(dāng)x<0,
∴f(x)=-x2+4>0,
解得-2<x<0,
當(dāng)x>0,
f(x)=x2-4>0,
∴x<-2或x>2,又x>0,
∴x>2.
綜上得,不等式的解集是:(-2,0)∪(2,+∞).
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)為奇函數(shù)的性質(zhì),且解析式為分段函數(shù)問(wèn)題,一元二次不等式的解法等知識(shí),以及分類(lèi)討論思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=log2$\frac{2+x}{2-x}$.
(1)判斷f(x)的奇偶性;
(2)利用函數(shù)單調(diào)性的定義證明f(x)為定義域上的單調(diào)增函數(shù);
(2)解關(guān)于x的不等式f(x2-2)+f(-x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)的定義域是{x|x≠0}的一切實(shí)數(shù),對(duì)定義域內(nèi)的任意x1,x2都有f(x1•x2)=f(x1)+f(x2),且當(dāng)x>1時(shí),f(x)<0,f(2)=-1.
(1)求證:f(x)是偶函數(shù);
(2)求證:f(x)在(0,+∞)上是減函數(shù);
(3)解不等式f(x2-1)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.底面為邊長(zhǎng)是n的正方形的四棱錐的直觀圖、正視圖和俯視圖如圖所示,畫(huà)出該幾何體的側(cè)視圖,并求出該四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.為研究變量x和y的線性相關(guān)性,甲、乙二人分別作了研究,兩人計(jì)算知$\overline{x}$相同,$\overline{y}$也相同,則得到的兩條回歸直線( 。
A.一定重合B.一定平行C.一定有公共點(diǎn)($\overline{x}$,$\overline{y}$)D.以上都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$.
(1)求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,已知a=1,b=$\sqrt{2}$,f(A-$\frac{π}{6}$)=$\sqrt{3}$,求角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知m,n是不同的直線,α、β是不同的平面,下列命題中,正確的是( 。
A.若α⊥β,α∩β=m,n⊥m,則n⊥α或n⊥βB.若α∥β,m?α,n?α,則m∥n
C.若m⊥α,n⊥β,α∥β,則m∥nD.若α∩β=m,n∥m,則n∥α,且n∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若直線x+ay-1=0與4x-2y+3=0垂直,則實(shí)數(shù)a的值為(  )
A.2B.-2C.-1D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在直角坐標(biāo)平面內(nèi),已知點(diǎn)A(-1,3),B(2,5),$\overrightarrow{AC}$=(1,2).
(1)求$\overrightarrow{CB}$;
(2)求(2$\overrightarrow{AC}$+$\overrightarrow{CB}$)•$\overrightarrow{BA}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案