分析 (1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍求出函數(shù)的單調(diào)區(qū)間即可;
(2)求出f(x1)+f(x2)=-(lna+$\frac{1}{a}$)-(1+ln2),令h(a)=-(lna+$\frac{1}{a}$)-(1+ln2),(0<a<$\frac{1}{2}$),根據(jù)函數(shù)的單調(diào)性證明即可.
解答 解:(1)由題意得,函數(shù)f(x)的定義域是(0,+∞),
f′(x)=2ax-2+$\frac{1}{x}$=$\frac{2{ax}^{2}-2x+1}{x}$,
令g(x)=2ax2-2x+1,△=4-8a,
①a≥$\frac{1}{2}$時(shí),△=4-8a≤0,f′(x)≥0恒成立,
則f(x)在(0,+∞)遞增;
②a<$\frac{1}{2}$時(shí),△=4-8a>0,
由g(x)=0,解得:x1=$\frac{1-\sqrt{1-2a}}{2a}$,x2=$\frac{1+\sqrt{1-2a}}{2a}$,
(i)0<a<$\frac{1}{2}$時(shí),0<x1<x2,
此時(shí)f(x)在區(qū)間(x1,x2)遞減,在(0,x1),(x2,+∞)遞增;
(ii)a<0時(shí),x2<0<x1,
此時(shí)f(x)在區(qū)間(x1,+∞)遞減,在(0,x1)遞增,
∴a≥$\frac{1}{2}$時(shí),f(x)在(0,+∞)遞增,
0<a<$\frac{1}{2}$時(shí),f(x)在區(qū)間(x1,x2)遞減,在(0,x1),(x2,+∞)遞增,
a<0時(shí),f(x)在區(qū)間(x1,+∞)遞減,在(0,x1)遞增;
(2)證明:由(1)得0<a<$\frac{1}{2}$時(shí),函數(shù)f(x)有2個(gè)極值點(diǎn)x1,x2,
且x1+x2=$\frac{1}{a}$,x1x2=$\frac{1}{2a}$,
∴f(x1)+f(x2)=-(lna+$\frac{1}{a}$)-(1+ln2),
令h(a)=-(lna+$\frac{1}{a}$)-(1+ln2),(0<a<$\frac{1}{2}$),
則h′(a)=-($\frac{1}{a}$-$\frac{1}{{a}^{2}}$)=$\frac{1-a}{{a}^{2}}$>0,
∴h(a)在(0,$\frac{1}{2}$)遞增,
則h(a)<h($\frac{1}{2}$)=-(ln$\frac{1}{2}$+2)-(1+ln2)=-3,
即f(x1)+f(x2)<-3.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類(lèi)討論思想,考查不等式的證明,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | 3 | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 20π | B. | $\frac{416\sqrt{3}π}{3}$ | C. | $\frac{500π}{3}$ | D. | 100π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | 2 | C. | 0 | D. | -2或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[kπ+\frac{3π}{8},kπ+\frac{7π}{8}],k∈Z$ | B. | $[2kπ+\frac{3π}{8},2kπ+\frac{7π}{8}],k∈Z$ | ||
C. | $[2kπ-\frac{π}{8},2kπ+\frac{3π}{8}],k∈Z$ | D. | $[kπ-\frac{π}{8},kπ+\frac{3π}{8}],k∈Z$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com