將4個顏色互不相同的球全部放入編號為1和2的兩個盒子里,使得放入每個盒子里的球的個數(shù)不小于該盒子的編號,則不同的放球方法有(    )

A.10種               B.20種              C.36種               D.52種

思路解析:有兩類情況,一類是每個盒子中放兩個球,共有=6種放法;另一類是編號為1的盒子中放一個球,編號為3的盒子中放兩個球,共有=4,故共有10種不同的放球方法,選A.

答案:A

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

5、將4個顏色互不相同的球全部放入編號為1和2的兩個盒子里,使得放入每個盒子里的球的個數(shù)不小于該盒子的編號,則不同的放球方法有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將4個顏色互不相同的球全部放入編號為1和2的兩個盒子里,使得放入每個盒子里的球的個數(shù)不小于該盒子的編號,則不同的放球方法有(    )

A.10種         B.20種              C.36種           D.52種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將4個顏色互不相同的球全部放入編號為1、2的兩個盒子里,使得放入每個盒子里的球的個數(shù)不小于該盒子的編號,則不同的放球方法有        (    )

A.10種                B.20種               C.36種               D.52種

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆廣西武鳴高中高二下學期期中理科數(shù)學試卷(解析版) 題型:選擇題

將4個顏色互不相同的球全部放入編號為1和2的兩個盒子里,使得放入每個盒子里的球的個數(shù)不小于該盒子的編號,則不同的放球方法種數(shù)為    (    )

A、     B、       C、         D、

 

查看答案和解析>>

同步練習冊答案