精英家教網 > 高中數學 > 題目詳情
將4個顏色互不相同的球全部放入編號為1和2的兩個盒子里,使得放入每個盒子里的球的個數不小于該盒子的編號,則不同的放球方法有(    )

A.10種         B.20種              C.36種           D.52種

答案:A

解析:滿足條件的放法有“2,2”及“1,3”,即=10種.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

5、將4個顏色互不相同的球全部放入編號為1和2的兩個盒子里,使得放入每個盒子里的球的個數不小于該盒子的編號,則不同的放球方法有( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

將4個顏色互不相同的球全部放入編號為1和2的兩個盒子里,使得放入每個盒子里的球的個數不小于該盒子的編號,則不同的放球方法有(    )

A.10種               B.20種              C.36種               D.52種

查看答案和解析>>

科目:高中數學 來源: 題型:

將4個顏色互不相同的球全部放入編號為1、2的兩個盒子里,使得放入每個盒子里的球的個數不小于該盒子的編號,則不同的放球方法有        (    )

A.10種                B.20種               C.36種               D.52種

查看答案和解析>>

科目:高中數學 來源:2013屆廣西武鳴高中高二下學期期中理科數學試卷(解析版) 題型:選擇題

將4個顏色互不相同的球全部放入編號為1和2的兩個盒子里,使得放入每個盒子里的球的個數不小于該盒子的編號,則不同的放球方法種數為    (    )

A、     B、       C、         D、

 

查看答案和解析>>

同步練習冊答案