9.力$\overrightarrow F=(-1,-2)$作用于質(zhì)點P,使P產(chǎn)生的位移為$\overrightarrow{S}$=(3,4),則力$\overrightarrow F$質(zhì)點P做的功為-11.

分析 直接由功的公式,利用數(shù)量積的坐標(biāo)運算得答案.

解答 解:∵$\overrightarrow F=(-1,-2)$,$\overrightarrow{S}$=(3,4),
∴W=$\overrightarrow{F}•\overrightarrow{S}$=(-1,-2)•(3,4)=-1×3+(-2)×4=-11.
故答案為:-11.

點評 本題考查平面向量的數(shù)量積運算,考查了數(shù)量積的物理意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.計算:sin(-$\frac{11π}{6}$)+cos$\frac{27}{7}π$•tan4π-cos$\frac{19π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)有函數(shù)f(x)=asin(kx-$\frac{π}{3}$)和函數(shù)g(x)=bcos(2kx-$\frac{π}{6}$)(a>0,b>0,k>0),若它們的最小正周期之和為$\frac{3π}{2}$,且f($\frac{π}{2}$)=g($\frac{π}{2}$),f($\frac{π}{4}$)=-$\sqrt{3}$g($\frac{π}{4}$)-1,求這兩個函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}的前n項和為Sn,且對任意正整數(shù)n都有an=(-1)nSn+pn(p為常數(shù),p≠0).
(1)求p的值;
(2)求數(shù)列{an}的通項公式;
(3)設(shè)集合An={a2n-1,a2n},且bn,cn∈An,記數(shù)列{nbn},{ncn}的前n項和分別為Pn,Qn,若b1≠c1,求證:對任意n∈N,Pn≠Q(mào)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示,正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,$AB=AD=\frac{1}{2}CD=2$,$\overrightarrow{EM}=λ\overrightarrow{EC}(0<λ<1)$.
(1)當(dāng)$λ=\frac{1}{2}$時,求證:BM∥平面ADEF;
(2)若平面BDM與平面ABF所成銳角二面角的余弦值為$\frac{1}{{\sqrt{38}}}$時,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.對于任意x,[x]表示不超過x的最大整數(shù),如[1.1]=1,[-2.1]=-3.定義R上的函數(shù)f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0≤x≤1},則A中所有元素的和為58.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=x2•sinx,給出下列三個命題:
(1)f(x)是R上的奇函數(shù);
(2)f(x)在$[-\frac{π}{2},\frac{π}{2}]$上單調(diào)遞增;
(3)對任意的${x_1},{x_2}∈[-\frac{π}{2},\frac{π}{2}]$,都有(x1+x2)[f(x1)+f(x2)]≥0
其中真命題的序號是(1)(2)(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=|x+$\sqrt{a}$|-|x-$\sqrt{1-a}$|.
(I)當(dāng)a=1時,求不等式f(x)≥$\frac{1}{2}$的解集;
(Ⅱ)若對任意a∈[0,1],不等式f(x)≥b的解集為空集,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若圓C的方程為(x-3)2+(y-2)2=4,直線l的方程為x-y+1=0,則圓C關(guān)于直線l對稱的圓的方程為( 。
A.(x+1)2+(y+4)2=4B.(x-1)2+(y-4)2=4C.(x-4)2+(y-1)2=4D.(x+4)2+(y+1)2=4

查看答案和解析>>

同步練習(xí)冊答案