(1g
1
8
-1g125)÷81-
1
2
=
 
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:利用對數(shù)和指數(shù)的性質(zhì)和運算法則求解.
解答: 解:(1g
1
8
-1g125)÷81-
1
2

=lg
1
1000
÷
1
9

=-3×9
=-27.
故答案為:-27.
點評:本題考查對數(shù)式和指數(shù)式的化簡求值,解題時要認真審題,注意運算法則的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,C=2A,cosA=
3
4

(1)求cosC,cosB的值;
(2)若S△ABC=
15
4
7
,求邊AC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=ex可表示成一個偶函數(shù)f(x)和一個奇函數(shù)g(x)之和,則f(ln2)+g(ln
1
2
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=2x-sinx的零點個數(shù)為
 
 個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,山腳下有一小塔AB,在塔底B測得山頂C的仰角為60°,在山頂C測得塔頂A的俯角為45°,已知塔高AB=20m,求山高CD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的奇函數(shù)f(x),滿足f(1)=0,且在(0,+∞)上單調(diào)遞增,則xf(x)>0的解集為( 。
A、{x|x<-1或x>1}
B、{x|0<x<1或-1<x<0}
C、{x|0<x<1或x<-1}
D、{x|-1<x<0或x>1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在(
x
-
2
3x
)n
的展開式中,第5項的系數(shù)與第3項的系數(shù)之比是56:3.
(1)求n;
(2)求展開式中的所有有理項;
(3)求Cn1+9Cn2+81Cn3+…+9n-1Cnn的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={1,2},請寫出集合A的所有子集
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率等于
1
3
,其焦點分別為A、B,C為橢圓上異于長軸端點的任意一點,則在△ABC中,
sinA+sinB
sinC
的值等于
 

查看答案和解析>>

同步練習冊答案