6.已知集合A={x∈R|(x+a)(x2+ax+1)=0}.
(1)是否存在實數(shù)a,使得a∈A?若存在,求出a的值;若不存在,請說明理由.
(2)若集合A有且僅有兩個元素,求實數(shù)a的取值集合.

分析 (1)要使a∈A,即(a+a)(a2+a2+1)=0有解,解方程即可;
(2)集合A有且僅有兩個元素,得到集合中方程(x+a)(x2+ax+1)=0有兩個不等實根,分析其解的情況,得到a 的取值.

解答 解:(1)已知集合A={x∈R|(x+a)(x2+ax+1)=0}.要使a∈A,即(a+a)(a2+a2+1)=0有解,解得a=0;所以存在實數(shù)a=0,使得a∈A;
(2)若集合A有且僅有兩個元素,說明方程(x+a)(x2+ax+1)=0有兩個不等實根,所以①x+a=0且x2+ax+1=0有兩個不等于-a的相等實根;解得a=2或-2;
②x2+ax+1=0有兩個不相等的實根,其中的一個根為-a;此情況不合題意;
故實數(shù)a的取值集合{2,-2}.

點評 本題考查了元素與集合關(guān)系;關(guān)鍵是由題意,正確分析集合中方程解的情況.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,若asinA+bsinB-csinC=$\sqrt{3}$asinB.則角C等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知單調(diào)遞增的等差數(shù)列{an}的前n項和為Sn,若S8=12,a3•a6=-18,則數(shù)列{an}的通項公式為an=3n-12;若數(shù)列{bn}的通項公式為bn=2n,則數(shù)列{abn}的前n項和Tn=6•2n-12n-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某班從6名干部中(其中男生4人,女生2人),選3人參加學(xué)校的義務(wù)勞動.
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列及均值;
(2)求男生甲或女生乙被選中的概率;
(3)在男生甲被選中的情況下,求女生乙也被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在三角形ABC中,AB=4,BC=3,∠ABC=30°,則向量$\overrightarrow{AB}$•$\overrightarrow{BC}$等于( 。
A.6$\sqrt{3}$B.-6$\sqrt{3}$C.6D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x2+x-$\frac{1}{4}$,若其定義域為[a,a+1],值域為[-$\frac{1}{2}$,$\frac{1}{16}$],求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,AB是平面α外的固定斜線段,B為斜足,若點C在平面α內(nèi)運動,且∠CAB等于直線AB與平面α所成的角,則動點C的軌跡為(  )
A.B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.一個機器零件的三視圖如圖所示,其中俯視圖是一個半圓內(nèi)切于邊長為3的正方形,則該機器零件的體積為$27+\frac{9}{8}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.利用浮力原理巧妙地稱出了皇冠中黃金的重量的阿基米德,在他的墓碑上有一幅幾何圖案,如圖所示,因為阿基米德很欣賞這三者的體積之比為V圓錐:V:V圓柱=1:2:3,他還得出球的表面積與它的外切圓柱的表面積之比等于它們的體積之比,都等于2:3.

查看答案和解析>>

同步練習(xí)冊答案