14.某班從6名干部中(其中男生4人,女生2人),選3人參加學校的義務(wù)勞動.
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列及均值;
(2)求男生甲或女生乙被選中的概率;
(3)在男生甲被選中的情況下,求女生乙也被選中的概率.

分析 (1)ξ的所有可能取值為0,1,2,再根據(jù)題意分別求出其概率即可得到其分布列,進而求出其期望.
(2)根據(jù)題意求出其對立事件的概率,進而根據(jù)有關(guān)公式求出答案.
(3)記“男生甲被選中”為事件A,“女生乙被選中”為事件B,再求出事件A與事件A、B共同發(fā)生的概率,進而根據(jù)條件概率的公式求出答案.

解答 解:(1)ξ的所有可能取值為0,1,2,
所以依題意得:P(ξ=0)=$\frac{{C}_{4}^{3}}{{C}_{6}^{3}}$=$\frac{1}{5}$,P(ξ=1)=$\frac{{C}_{4}^{2}{C}_{2}^{1}}{{C}_{6}^{3}}$=$\frac{3}{5}$,P(ξ=2)=$\frac{{C}_{4}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
所以ξ的分布列為

ξ0         1         2
P$\frac{1}{5}$$\frac{3}{5}$$\frac{1}{5}$
所以Eξ=0×$\frac{1}{5}$+1×$\frac{3}{5}$+2×$\frac{1}{5}$=1,
(2)設(shè)“甲、乙都不被選中”為事件C,則P(C)=$\frac{{C}_{4}^{3}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
所以所求概率為P($\overline{C}$)=1-P(C)=1-$\frac{1}{5}$=$\frac{4}{5}$.
(3)記“男生甲被選中”為事件A,“女生乙被選中”為事件B,
所以P(A)=$\frac{{C}_{5}^{2}}{{C}_{6}^{3}}$=$\frac{1}{2}$,P(AB)=$\frac{{C}_{4}^{3}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
所以P(B|A)=$\frac{P(BA)}{P(A)}$=$\frac{2}{5}$.
所以在男生甲被選中的情況下,女生乙也被選中的概率為$\frac{2}{5}$.

點評 本題主要考查等可能事件的概率與條件概率,以及離散型隨機變量的分布列、期望與方差等知識點,屬于中檔題型,高考命題的趨向.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.向量$\overrightarrow a$,$\overrightarrow b$滿足$\overrightarrow a$=(1,$\sqrt{3}$),|${\overrightarrow b}$|=1,|${\overrightarrow a$+2$\overrightarrow b}$|=2$\sqrt{3}$,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.將函數(shù)f(x)=$\sqrt{3}$sinx-cosx的圖象向左平移m個單位(m>0),若所得圖象對應的函數(shù)為偶函數(shù),則m的最小值是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=2cosx(cosx-sinx)最小正周期為π,當x∈[0,$\frac{π}{6}$]時,函數(shù)f(x)的最小值為$\frac{3-\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列命題中真命題的個數(shù)為( 。
①兩個變量x,y的相關(guān)系數(shù)r越大,則變量x,y的相關(guān)性越強;
②從4個男生3個女生中選取3個人,則至少有一個女生的選取種數(shù)為31種.
③命題p:?x∈R,x2-2x-1>0的否定為?p:?x0∈R,x02-2x0-1≤0.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)y=sinx在區(qū)間[0,2π]上的圖象與x軸的交點個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知集合A={x∈R|(x+a)(x2+ax+1)=0}.
(1)是否存在實數(shù)a,使得a∈A?若存在,求出a的值;若不存在,請說明理由.
(2)若集合A有且僅有兩個元素,求實數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,在長方體ABCD-A1B1C1D1中,AA1=AD=a,E為CD上任意一點.
(I)求證:B1E⊥AD1;
(Ⅱ)若CD=$\sqrt{2}$a,是否存在這樣的E點,使得AD1與平面B1AE成45°的角?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{x-1,x≤2}\\{2+{{log}_a}x,x>2}\end{array}}$(a>0且a≠1)的最大值為1,則a的取值范圍是(  )
A.$[\frac{1}{2},1)$B.(0,1)C.$(0,\frac{1}{2}]$D.(1,+∞)

查看答案和解析>>

同步練習冊答案