18.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不平行,且2x$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$=(y+1)$\overrightarrow{{e}_{2}}$,則實(shí)數(shù)x,y的值是(  )
A.x=0,y=2B.x=0,y=-2C.x=2,y=-2D.不能唯一確定

分析 由已知可得2x=0,y+1=3,解得答案.

解答 解:∵$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不平行,且2x$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$=(y+1)$\overrightarrow{{e}_{2}}$,
∴2x=0,y+1=3,
解得:x=0,y=2,
故選:A

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是平面向量的基本定理及其意義,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.A={x|2x2-px+q=0},B={x|6x2+(p+2)x+q=0},若A∩B={2}.
(1)求p,q的值;
(2)求A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),0<α<π),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=$\frac{p}{1-cosθ}$(p>0).
(Ⅰ)寫出直線l的極坐標(biāo)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點(diǎn),求$\frac{1}{|OA|}$+$\frac{1}{|OB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)y=ax+2-2(a>0且a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny+1=0上,其中mn>0,則當(dāng)$\frac{1}{m}$+$\frac{1}{n}$取最小值時(shí),橢圓$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1的離心率為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若函數(shù)f(x)=x3,f′(a)=3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知sinα,cosα是方程x2+ax+2b2=0的兩個(gè)根,且0≤α<2π,a,b為整數(shù),求角α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求下列函數(shù)的導(dǎo)數(shù):
(1)y=x-sin$\frac{x}{2}$cos$\frac{x}{2}$;
(2)y=sin4$\frac{x}{4}$+cos4$\frac{x}{4}$;
(3)y=$\frac{1+\sqrt{x}}{1-\sqrt{x}}$+$\frac{1-\sqrt{x}}{1+\sqrt{x}}$;
(4)y=-sin$\frac{x}{2}$(1-2cos2$\frac{x}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.化簡:$\frac{1+sin2θ-cos2θ}{1+sin2θ+cos2θ}$+$\frac{1+sin2θ+cos2θ}{1+sin2θ-cos2θ}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年遼寧大連十一中高一下學(xué)期段考二試數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

已知sinα=,則cos(α+)=( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案