分析 (1)通過an=an-1+3n-1(n≥2)可知an-an-1=3n-1(n≥2),進(jìn)而利用累加法計(jì)算即得結(jié)論;
(2)通過對an=$\frac{n-1}{n}$an-1(n≥2)變形可知$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n}$(n≥2),進(jìn)而利用累乘法計(jì)算可得結(jié)論.
解答 解:(1)∵an=an-1+3n-1(n≥2),
∴an-an-1=3n-1(n≥2),
∴an-an-1=3n-1,an-1-an-2=3n-2,…,a2-a1=31,
累加得:an-a1=$\frac{3(1-{3}^{n-1})}{1-3}$=$\frac{{3}^{n}-3}{2}$,
又∵a1=1,
∴an=$\frac{{3}^{n}-3}{2}$+1=$\frac{{3}^{n}-1}{2}$;
(2)∵an=$\frac{n-1}{n}$an-1(n≥2),
∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n}$(n≥2),$\frac{{a}_{n-1}}{{a}_{n-2}}$=$\frac{n-2}{n-1}$,…,$\frac{{a}_{2}}{{a}_{1}}=\frac{1}{2}$,
累乘得:$\frac{{a}_{n}}{{a}_{1}}$=$\frac{1}{n}$,
又∵a1=1,
∴an=$\frac{1}{n}$.
點(diǎn)評 本題考查數(shù)列的通項(xiàng),利用累加法、累乘法是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com