【題目】已知函數(shù).

(1)若時(shí),討論函數(shù)的單調(diào)性;

(2)若函數(shù)在區(qū)間上恰有2個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】(1)見(jiàn)解析;(2)

【解析】分析:(1)求出,分三種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(2)分三種情況討論的范圍,分別利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,結(jié)合零點(diǎn)存在定理與函數(shù)圖象,可篩選出函數(shù)在區(qū)間上恰有2個(gè)零點(diǎn)的實(shí)數(shù)的取值范圍.

詳解1)

當(dāng)時(shí),,此時(shí)單調(diào)遞增;

當(dāng)時(shí),

當(dāng)時(shí),,恒成立,,此時(shí)單調(diào)遞增;

當(dāng)時(shí),令

上單調(diào)遞增;在上單調(diào)遞減;

綜上:當(dāng)時(shí),單調(diào)遞增;

當(dāng)時(shí),上單調(diào)遞增;

上單調(diào)遞減;

(2)當(dāng)時(shí),由(1)知,單調(diào)遞增,,

此時(shí)在區(qū)間上有一個(gè)零點(diǎn),不符;

當(dāng)時(shí),,單調(diào)遞增;

此時(shí)在區(qū)間上有一個(gè)零點(diǎn),不符

當(dāng)時(shí),要使內(nèi)恰有兩個(gè)零點(diǎn),必須滿(mǎn)足

在區(qū)間上恰有兩個(gè)零點(diǎn)時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題10分) 從3名男生和名女生中任選2人參加比賽。

①求所選2人都是男生的概率;

②求所選2人恰有1名女生的概率;

③求所選2人中至少有1名女生的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某體育用品商場(chǎng)經(jīng)營(yíng)一批進(jìn)價(jià)為40元的運(yùn)動(dòng)服,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn)銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)符合一次函數(shù)模型,且銷(xiāo)售單價(jià)為60元時(shí),銷(xiāo)量是600件;當(dāng)銷(xiāo)售單價(jià)為64元時(shí),銷(xiāo)量是560.

(1)寫(xiě)出銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x()之間的函數(shù)關(guān)系式

(2)試求銷(xiāo)售利潤(rùn)z(元)與銷(xiāo)售單價(jià)x()之間的函數(shù)關(guān)系式;

(3)(1)(2)條件下,當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),商場(chǎng)能獲得最大利潤(rùn)?并求出此最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線(xiàn) 的極坐標(biāo)方程為:.

(I)若曲線(xiàn),參數(shù)方程為:(為參數(shù)),求曲線(xiàn)的直角坐標(biāo)方程和曲線(xiàn)的普通方程

(Ⅱ)若曲線(xiàn),參數(shù)方程為 (為參數(shù)),,且曲線(xiàn),與曲線(xiàn)交點(diǎn)分別為,求的取值范圍,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)與直線(xiàn)交于不同兩點(diǎn)分別過(guò)點(diǎn)、點(diǎn)作拋物線(xiàn)的切線(xiàn),所得的兩條切線(xiàn)相交于點(diǎn).

(Ⅰ)求證為定值:

(Ⅱ)求的面積的最小值及此時(shí)的直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四面體中,,

(1)證明:;

(2)若,,四面體的體積為2,求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四面體中,

(1)證明:;

(2)若,,四面體的體積為2,證明:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若的極大值點(diǎn),求的值;

2)若上只有一個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半徑為2的圓內(nèi)有兩條圓弧,一質(zhì)點(diǎn)M自點(diǎn)A開(kāi)始沿弧A-B-C-O-A-D-C做勻速運(yùn)動(dòng),則其在水平方向(向右為正)的速度的圖像大致為( )

查看答案和解析>>

同步練習(xí)冊(cè)答案