(本題10分)三棱柱中,側(cè)棱底面,

(1)求異面直線所成角的余弦值;
(2)求證:
(1);(2)只需證。

試題分析:(1)分別以CA、CB、CC1所在的直線為x軸、y軸、z軸建立空間直角坐標(biāo)系.
,
所以      ………5分
(2)因?yàn)閭?cè)棱底面,,又,所以,所以,又在正方形中,,所以,所以  ………10分
點(diǎn)評(píng):用向量法求異面直線所成的角時(shí),要注意向量的夾角和異面直線所成的角的聯(lián)系和區(qū)別,兩向量的夾角的范圍為,兩異面直線所成角的范圍為。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在如圖的直三棱柱中,,點(diǎn)的中點(diǎn).

(1)求證:∥平面;
(2)求異面直線所成的角的余弦值;
(3)求直線與平面所成角的正弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示的三棱錐A-BCD中,∠BAD=90°,AD⊥BC,AD=4,AB=AC=2,∠BAC=120°,若點(diǎn)P為△ABC內(nèi)的動(dòng)點(diǎn)滿足直線DP與平面ABC所成角的正切值為2,則點(diǎn)P在△ABC內(nèi)所成的軌跡的長(zhǎng)度為              

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)為兩兩不重合的平面,為兩兩不重合的直線,給出下列四個(gè)命題:
①若,則;
②若,,則;
③若,,,,則;
④若,,,則。
其中命題正確的是              .(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,菱形ABCD與矩形BDEF所在平面互相垂直,

(1)求證:FC∥平面AED
(2)若,當(dāng)二面角為直二面角時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(如圖),具有公共軸的兩個(gè)直角坐標(biāo)平面所成的二面角等于.已知內(nèi)的曲線的方程是,求曲線內(nèi)的射影的曲線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將銳角為且邊長(zhǎng)是2的菱形,沿它的對(duì)角線折成60°的二面角,則(      )
①異面直線所成角的大小是       .
②點(diǎn)到平面的距離是       .
A.90°,B.90°,C.60°,D.60°,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐中,底面,點(diǎn),分別在棱上,且 

(Ⅰ)求證:平面
(Ⅱ)當(dāng)的中點(diǎn)時(shí),求與平面所成的角的正弦值;
(Ⅲ)是否存在點(diǎn)使得二面角為直二面角?若存在,請(qǐng)確定點(diǎn)E的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
如圖所示是一個(gè)半圓柱與三棱柱的組合體,其中,圓柱的軸截面是邊長(zhǎng)為4的正方形,為等腰直角三角形,.

試在給出的坐標(biāo)紙上畫出此組合體的三視圖.

查看答案和解析>>

同步練習(xí)冊(cè)答案