設(shè)數(shù)列{an}滿足:a1=2,a2=8,an+1=(1+sin
4nπ+π
2
)an,(n=1,2,3,…).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足bn=na2n,求數(shù)列{bn}的前n項和Tn
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由已知條件得{an}從第2項起是以8為首項2為公比的等比數(shù)列,由此能求出{an}的通項公式.
(Ⅱ)由bn=na2n=n•4n,利用錯位相減法能求出數(shù)列{bn}的前n項和Tn
解答: 解:(Ⅰ)∵an+1=(1+sin
4nπ+π
2
)an=2an
又a1=2,a2=8,
∴{an}從第2項起是以8為首項2為公比的等比數(shù)列,
an=
2,n=1
2n+1,n≥2

(Ⅱ)bn=na2n=n•4n,
∴Tn=1•4+2•42+3•43+…+n•4n,①
4Tn=1•42+2•43+3•44+…+n•4n+1,②
①-②,得:-3Tn=4+42+43+…+4n-n•4n+1
=
4(1-4n)
1-4
-n•4n+1,
∴Tn=
4
9
-
4n+1
9
+
n
3
4n-1
點評:本題考查數(shù)列的通項公式的求法,考查數(shù)列的前n項和的求法,解題時要認(rèn)真審題,注意錯位相減法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的定義域:
①f(x)=
1-x
2x2-3x-2
;
②f(x)=
1-x
+
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)的焦點為F,點P是拋物線上的一點,且縱坐標(biāo)為4,|PF|=4.
(1)求拋物線的方程;
(2)設(shè)直線l與拋物線交于A,B兩點,且∠APB的角平分線與x軸垂直,求△PAB面積最大時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一家公司生產(chǎn)某種品牌服裝的年固定成本為10萬元,每生產(chǎn)1千件需要另投入1萬元,設(shè)該公司一年內(nèi)生產(chǎn)該品牌服裝x千件,并全部銷售完,每千件的銷售收入為R(x)萬元,且R(x)=
108
x
-
100
x(x+1)
,(x>0)
(1)寫出年利潤W(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲得的年利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
1
2
,短軸的兩個端點分別為B1、B2,焦點為F1、F2,四邊形F1B1F2B2的內(nèi)切圓半徑為
3
2

(1)求橢圓C的方程;
(2)過左焦F1點的直線交橢圓于M、N兩點,交直線x=-4于點P,設(shè)
PM
MF1
PN
NF2
,試證λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的上頂點到焦點的距離為2,離心率為
3
2

(1)求a,b的值.
(2)設(shè)P是橢圓C長軸上的一個動點,過點P作斜率為k的直線l交橢圓C于A、B兩點.
(。┤鬹=1,求△OAB面積的最大值;
(ⅱ)若PA2+PB2的值與點P的位置無關(guān),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知多面體EABCDF的底面ABCD是邊長為2的正方形,EA⊥底面ABCD,F(xiàn)D∥EA,且FD=
1
2
EA=1.
(Ⅰ)求多面體EABCDF的體積;
(Ⅱ)求證:平面EAB⊥平面EBC;
(Ⅲ)記線段CB的中點為K,在平面ABCD內(nèi)過K點作一條直線與平面ECF平行,要求保留作圖痕跡,但不要求證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知∠A的終邊上有一點P(x,-1),且tanA=-x,求sinA+cosA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐S-ABC的所有頂點都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,則球O的表面積為
 

查看答案和解析>>

同步練習(xí)冊答案