已知點P(a,2),Q(-2,-3),M(1,1),且|PQ|=|PM|,求a的值.
考點:兩點間的距離公式
專題:直線與圓
分析:直接利用兩點間的距離公式求解即可.
解答: 解:因為點P(a,2),Q(-2,-3),M(1,1),且|PQ|=|PM|,
所以
(a+2)2+(2+3)2
=
(a-1)2+(2-1)2
,
解得:a=-
9
2
點評:本題考查兩點間距離公式的應用,基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)是定義在R上的偶函數(shù),且f(x)=f(x-2),當x∈[0,1]時,f(x)=x+1,f(
3
2
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式x2-16≤0的解集是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:A、B、C是△ABC的內(nèi)角,a,b,c分別是其對邊長,向量
m
=(
3
,cosA+1),
n
=(sinA,-1),
m
n

(Ⅰ)求角A的大小;
(Ⅱ)若,a=2,cosB=
3
3
,求b的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={0,3,a2},B={1,a},若A∪B={0,1,2,3,4},則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:7
33
-3
324
+
43
33
+0.0080=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)過點(1,
2
2
),F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點,且F1、F2距離為2.
(1)求橢圓的標準方程.
(2)是否存在圓心在y軸上的圓,使圓在x軸上方與橢圓交于P1,P2兩點(P1在P2的左側),P1F1和P2F2都是圓的切線,且P1F1⊥P2F2?如果存在,求出圓的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用行列式討論關于x,y的二元一次方程組
mx+4y=m+2
x+my=m
的解的情況,并說明各自的幾何意義.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對任意的實數(shù)x,y,矩陣運算
ab
cd
x
y
=
y
x
都成立,則
ab
cd
=
 

查看答案和解析>>

同步練習冊答案