6.已知函數(shù)$f(x)=lnx+tanα(α∈(0,\frac{π}{2}))$的導(dǎo)函數(shù)為f′(x),若存在0<x0<1使得f′(x0)=f(x0)成立,則實(shí)數(shù)α的取值范圍是($\frac{π}{4}$,$\frac{π}{2}$).

分析 由于f′(x)=$\frac{1}{x}$,f′(x0)=$\frac{1}{{x}_{0}}$,f′(x0)=f(x0),可得$\frac{1}{{x}_{0}}$=ln x0+tan α,即tan α=$\frac{1}{{x}_{0}}$-ln x0,由0<x0<1,可得$\frac{1}{{x}_{0}}$-ln x0>1,即tan α>1,即可得出.

解答 解:∵f′(x)=$\frac{1}{x}$,f′(x0)=$\frac{1}{{x}_{0}}$,f′(x0)=f(x0),
∴$\frac{1}{{x}_{0}}$=ln x0+tan α,
∴tan α=$\frac{1}{{x}_{0}}$-ln x0,
又∵0<x0<1,
∴可得$\frac{1}{{x}_{0}}$-ln x0>1,即tan α>1,
∴α∈($\frac{π}{4}$,$\frac{π}{2}$),
故答案為:($\frac{π}{4}$,$\frac{π}{2}$).

點(diǎn)評 本題考查了導(dǎo)數(shù)的運(yùn)算法則、對數(shù)函數(shù)和正切函數(shù)的單調(diào)性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.角-558°的終邊在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若a=2${\;}^{\frac{1}{3}}$,b=log${\;}_{\frac{1}{2}}$0.8,c=log20.8,則a,b,c的大小關(guān)系為(  )
A.b>a>cB.a>c>bC.a>b>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若直線ax+y+1=0過圓x2+y2+2x-ay-2=0的圓心,則實(shí)數(shù)a的值為( 。
A.-2B.2C.6D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),f(2)=1,且對任意的x,y>0滿足f(x)+f(y)=f(xy).
(1)計(jì)算f(1),f(4);
(2)解不等式f(x)-f(x-3)≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.飛機(jī)從甲地以北偏西15°的方向飛行1400km到達(dá)乙地,再從乙地以南偏東75°的方向飛行1400km到達(dá)丙地.試畫出飛機(jī)飛行的位移示意圖,并說明丙地在甲地的什么方向?丙地距甲地多遠(yuǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.某市統(tǒng)計(jì)局就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖,每個分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在[1000,1500)
①根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù)為2400
②為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,按月收入從這10 000人中用分層抽樣方法抽出100人作進(jìn)一步分析,則應(yīng)在月收入為[2500,3000)的人中抽取25人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在某次知識競賽中,參賽選手成績的莖葉圖和頻率分布直方圖受到損壞,可見部分如圖所示.

(1)根據(jù)圖中信息,將圖乙中的頻率分布直方圖補(bǔ)充完整;
(2)根據(jù)頻率分布直方圖估計(jì)競賽成績的平均值;
(3)從成績在[80,100]的選手中任選2人進(jìn)行綜合能力評估,求至少1人成績在[90,100]的頻率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.若兩圓的半徑分別為3和8,圓心距為13,試求兩圓的外公切線的長度.

查看答案和解析>>

同步練習(xí)冊答案