19.一個(gè)袋中有4個(gè)大小質(zhì)地相同的小球,其中紅球1個(gè),白球2個(gè)(分別標(biāo)號(hào)為1,2),黑球1個(gè),現(xiàn)從袋中有放回的取球,每次隨機(jī)取1個(gè).
(1)求連續(xù)取兩次都沒取到白球的概率;
(2)若取1個(gè)紅球記2分,取1個(gè)白球記1分,取1個(gè)回球記0分,連續(xù)取兩次球,求分?jǐn)?shù)之和為2或3的概率.

分析 (1)利用列舉法寫出連續(xù)取兩次的事件總數(shù)情況,共16種,從中算出連續(xù)取兩次都不是白球的種數(shù),最后求出它們的比值即可;
(2)從中數(shù)出連續(xù)取二次分?jǐn)?shù)之和為2或3的種數(shù),根據(jù)互斥事件的概率公式,計(jì)算即可.

解答 解:(1)連續(xù)取兩次所包含的基本事件有:(紅,紅),(紅,白1),(紅,白2),(紅,黑);(白1,紅)(白1,白1)(白1,白2),(白1,黑);(白2,紅),
(白2,白1),(白2,白2),(白2,黑);(黑,紅),(黑,白1),(黑,白2),(黑,黑),所以基本事件的總數(shù)16個(gè),
設(shè)事件A:“連續(xù)取兩次都沒有取到白球”,則事件A所包含的基本事件有:(紅,紅),(黑,紅),(紅,黑),(黑,黑)4個(gè)基本事件,
所以P(A)=$\frac{4}{16}$=$\frac{1}{4}$,
(2)設(shè)事件B:“連續(xù)取兩次分?jǐn)?shù)之和為2“,則事件B由(紅,黑),(白1,白1),(白1,白2),(白2,白1),(白2,白2),(黑,紅),6個(gè)基本事件組成,
則P(B)=$\frac{6}{16}$=$\frac{3}{8}$,
設(shè)事件C:“連續(xù)取兩次分?jǐn)?shù)之和為3“,則事件C由(紅,白1),(紅,白2),(白1,紅);(白2,紅),4個(gè)基本事件組成,
則P(C)=$\frac{4}{16}$=$\frac{1}{4}$,
設(shè)事件D,“連續(xù)取兩次分?jǐn)?shù)之和為2或3”,且B與C互斥,
則P(D)=P(B)+P(C)=$\frac{3}{8}$+$\frac{1}{4}$=$\frac{5}{8}$.

點(diǎn)評(píng) 本題考查了古典概型的概率問題,關(guān)鍵是列舉基本的事件,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)h(x)=xlnx,$φ(x)=\frac{a}{x^2}(a>0)$.
(Ⅰ)求$g(x)=\int_a^x{φ(t)dt}$;
(Ⅱ)設(shè)函數(shù)f(x)=h′(x)-g(x)-1,試確定f(x)的單調(diào)區(qū)間及最大最小值;
(Ⅲ)求證:對(duì)于任意的正整數(shù)n,均有${e^{1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}}}≥\frac{e^n}{n!}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知拋物線x2=-4$\sqrt{5}$y的焦點(diǎn)與雙曲線$\frac{x^2}{a}+\frac{y^2}{4}$=1(a∈R)的一焦點(diǎn)重合,則該雙曲線的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{5}$C.$\frac{{5\sqrt{3}}}{3}$D.$\frac{{3\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.直線l:8x-6y-3=0被圓O:x2+y2-2x+a=0所截得弦的長(zhǎng)度為$\sqrt{3}$,則實(shí)數(shù)a的值是( 。
A.-1B.0C.1D.1-$\frac{{\sqrt{13}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.直線過點(diǎn)(2,-3),且在兩個(gè)坐標(biāo)軸上的截距互為相反數(shù),則這樣的直線方程是3x+2y=0或x-y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.根據(jù)下列算法語句,將輸出的A值依次記為a1,a2,…,an,…,a2015
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)已知函數(shù)f(x)=a2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期是a1,且函數(shù)y=f(x)的圖象關(guān)于直線x=$\frac{1}{6}$對(duì)稱,求函數(shù)f(x)=a2sin(ωx+φ)在區(qū)間[-$\frac{1}{6}$,$\frac{1}{3}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知直線y=ax+1經(jīng)過拋物線y2=4x的焦點(diǎn),則該直線的傾斜角為( 。
A.0B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.定義域?yàn)镽的函數(shù)f(x)滿足f(x+2)=2f(x),當(dāng)x∈[0,2]時(shí),f(x)=x2-2x,若x∈[-4,-2]時(shí),f(x)≥$\frac{1}{8}$($\frac{3}{t}$-t)恒成立,則實(shí)數(shù)t的取值范圍是{t|t≥3或-1≤t<0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.兩個(gè)不同的口袋中,各裝有大小、形狀完全相同的1個(gè)紅球、2個(gè)黃球.現(xiàn)從每一個(gè)口袋中各任取2球,設(shè)隨機(jī)變量ξ為取得紅球的個(gè)數(shù),則Eξ=$\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案