分析 (Ⅰ)利用定積分的定義求解即可.
(Ⅱ)對(duì)函數(shù)f(x)進(jìn)行求導(dǎo),得到單調(diào)區(qū)間,在單調(diào)區(qū)間內(nèi)得到最大值、最小值.
(Ⅲ)取a=1,由(Ⅱ)知,$f(x)=lnx-\frac{x-1}{x}≥f(1)=0$,利用新函數(shù)的性質(zhì)得到加和式,從而得證.
解答 解:(Ⅰ)$g(x)=\int_a^x{φ(t)dt}=\int_a^x{\frac{a}{t^2}dt}=-a[\frac{1}{t}]|_a^x=-a(\frac{1}{x}-\frac{1}{a})=\frac{x-a}{x}$; …(3分)
(Ⅱ)∵h(yuǎn)'(x)=(xlnx)'=lnx+1(x>0),
∴$f(x)=lnx+1-\frac{x-a}{x}-1=lnx-\frac{x-a}{x}(x>0)$,$f'(x)=\frac{1}{x}-\frac{x-(x-a)}{x^2}=\frac{x-a}{x^2}(x>0)$,
∵a>0,∴函數(shù)f(x)在區(qū)間(0,a)上單調(diào)遞減,在區(qū)間(a,+∞)上單調(diào)遞增,
函數(shù)f(x)的最小值為f(a)=lna,函數(shù)f(x)無最大值; …(7分)
(Ⅲ)證明:取a=1,由(Ⅱ)知,$f(x)=lnx-\frac{x-1}{x}≥f(1)=0$,
∴$lnx≥\frac{x-1}{x}=1-\frac{1}{x}$,即 $\frac{1}{x}≥1-lnx=ln\frac{e}{x}$,亦即 ${e^{\frac{1}{x}}}≥\frac{e}{x}$,…(10分)
分別取 x=1,2,…,n得${e^{\frac{1}{1}}}≥\frac{e}{1}$,${e^{\frac{1}{2}}}≥\frac{e}{2}$,${e^{\frac{1}{3}}}≥\frac{e}{3}$,…,${e^{\frac{1}{n}}}≥\frac{e}{n}$,
將以上各式相乘,得:${e^{1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}}}≥\frac{e^n}{n!}$…(12分)
點(diǎn)評(píng) 本題主要考查了定積分的概念及利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間、最值的問題,屬于難度較大的題型,在高考中常作壓軸題出現(xiàn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | -l | D. | ±1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+y2-10x+10=0 | B. | x2+y2-10x+15=0 | C. | x2+y2+10x+15=0 | D. | x2+y2+10x+10=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m≥e2+$\frac{1}{e}$ | B. | m>$\frac{1}{e}$ | C. | m<e2+$\frac{1}{e}$ | D. | m≤$\frac{1+e}{e}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | $\frac{4}{3}$ | C. | $\frac{8}{3}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com