17.設(shè)a,b是實(shí)數(shù),則“a>b”是“a2>b2”的( 。 條件.
A.充分而不必要B.必要而不充分
C.既不充分也不必要D.充要

分析 本題考查的判斷充要條件的方法,我們可以根據(jù)充要條件的定義進(jìn)行判斷,此題的關(guān)鍵是對(duì)不等式性質(zhì)的理解.

解答 解:因?yàn)閍,b都是實(shí)數(shù),由a>b,不一定有a2>b2,如-2>-3,但(-2)2<(-3)2,所以“a>b”是“a2>b2”的不充分條件;
反之,由a2>b2也不一定得a>b,如(-3)2>(-2)2,但-3<-2,所以“a>b”是“a2>b2”的不必要條件.
故選:C.

點(diǎn)評(píng) 判斷充要條件的方法是:
①若p⇒q為真命題且q⇒p為假命題,則命題p是命題q的充分不必要條件;
②若p⇒q為假命題且q⇒p為真命題,則命題p是命題q的必要不充分條件;
③若p⇒q為真命題且q⇒p為真命題,則命題p是命題q的充要條件;
④若p⇒q為假命題且q⇒p為假命題,則命題p是命題q的即不充分也不必要條件.
⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.
⑥涉及不等式平方大小的比較問題,舉反例不失為一種有效的方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年廣東清遠(yuǎn)三中高二上學(xué)期月考一數(shù)學(xué)(文)試卷(解析版) 題型:填空題

對(duì)函數(shù),有下列說法:

的周期為,值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2017122706114948634844/SYS201712270612107175175982_ST/SYS201712270612107175175982_ST.004.png">;

的圖象關(guān)于直線對(duì)稱;

的圖象關(guān)于點(diǎn)對(duì)稱;

上單調(diào)遞增;

⑤將的圖象向左平移個(gè)單位,即得到函數(shù)的圖象.

其中正確的是_______.(填上所有正確說法的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆四川巴中市高中高三畢業(yè)班10月零診理數(shù)試卷(解析版) 題型:填空題

已知向量共線且方向相同,則 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=sinx的圖象向左平移$\frac{π}{3}$個(gè)單位,橫坐標(biāo)縮小到原來的$\frac{1}{2}$,縱坐標(biāo)擴(kuò)大到原來的3倍,所得的函數(shù)圖象解析式為( 。
A.y=3sin($\frac{1}{2}$x+$\frac{π}{3}$)B.y=3sin(2x+$\frac{π}{3}$)C.y=3sin(2x+$\frac{2π}{3}$)D.y=$\frac{1}{3}$sin($\frac{1}{2}$x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.計(jì)算(lg25-lg$\frac{1}{4}$)•100${\;}^{-\frac{1}{2}}$結(jié)果為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=$\sqrt{x-2}$+(x-4)0的定義域?yàn)椋ā 。?table class="qanwser">A.{x|x>2,x≠4}B.[2,4)∪(4,+∞)C.{x|x≥2,或x≠4}D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知⊙M的圓心在拋物線x2=4y上,且⊙M與y軸及拋物線的準(zhǔn)線都相切,則⊙M的方程是( 。
A.x2+y2±4x-2y+1=0B.x2+y2±4x-2y-1=0C.x2+y2±4x-2y+4=0D.x2+y2±4x-2y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知拋物線C:y=$\frac{1}{2}$x2,直線l:y=x-1,設(shè)P為直線l上的動(dòng)點(diǎn),過點(diǎn)P作拋物線的兩條切線,切點(diǎn)分別為A、B
(Ⅰ)當(dāng)點(diǎn)P在y軸上時(shí),求線段AB的長;
(Ⅱ)求證:直線AB恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知點(diǎn)A、F分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點(diǎn)和左焦點(diǎn),若AF與圓O:x2+y2=4相切于點(diǎn)T,且點(diǎn)T是線段AF靠近點(diǎn)A的三等分點(diǎn),則橢圓C的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{18}+\frac{{y}^{2}}{6}$=1.

查看答案和解析>>

同步練習(xí)冊答案