19.$\frac{{{i^{2017}}}}{1-2i}$=(  )
A.$-\frac{2}{5}+\frac{1}{5}i$B.$\frac{2}{5}-\frac{1}{5}i$C.$\frac{2}{5}+\frac{1}{5}i$D.$-\frac{2}{5}-\frac{1}{5}i$

分析 利用虛數(shù)單位i的性質(zhì)化簡(jiǎn),再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.

解答 解:$\frac{{{i^{2017}}}}{1-2i}$=$\frac{{i}^{2016}•i}{1-2i}=\frac{i}{1-2i}=\frac{i(1+2i)}{(1-2i)(1+2i)}$=$\frac{-2+i}{5}=-\frac{2}{5}+\frac{1}{5}i$.
故選:A.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了虛數(shù)單位i的性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.生產(chǎn)甲乙兩種精密電子產(chǎn)品,用以下兩種方案分別生產(chǎn)出甲乙產(chǎn)品共3件,現(xiàn)對(duì)這兩種方案生產(chǎn)的產(chǎn)品分別隨機(jī)調(diào)查了100次,得到如下統(tǒng)計(jì)表:
①生產(chǎn)2件甲產(chǎn)品和1件乙產(chǎn)品
正次品甲正品
甲正品
乙正品
甲正品
甲正品
乙次品
甲正品
甲次品
乙正品
甲正品
甲次品
乙次品
甲次品
甲次品
乙正品
甲次品
甲次品
乙次品
頻  數(shù)15201631108
②生產(chǎn)1件甲產(chǎn)品和2件乙產(chǎn)品
正次品乙正品
乙正品
甲正品
乙正品
乙正品
甲次品
乙正品
乙次品
甲正品
乙正品
乙次品
甲次品
乙次品
乙次品
甲正品
乙次品
乙次品
甲次品
頻  數(shù)81020222020
已知生產(chǎn)電子產(chǎn)品甲1件,若為正品可盈利20元,若為次品則虧損5元;生產(chǎn)電子產(chǎn)品乙1件,若為正品可盈利30元,若為次品則虧損15元.
(1)按方案①生產(chǎn)2件甲產(chǎn)品和1件乙產(chǎn)品,求這3件產(chǎn)品平均利潤(rùn)的估計(jì)值;
(2)從方案①②中選其一,生產(chǎn)甲乙產(chǎn)品共3件,欲使3件產(chǎn)品所得總利潤(rùn)大于30元的機(jī)會(huì)多,應(yīng)選用哪個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,底面ABCD是梯形,AB∥CD,PD⊥平面ABCD,BD⊥DC,PD=BD=DC=$\frac{1}{2}$AB,E為PC中點(diǎn).
( I)證明:平面BDE⊥平面PBC;
( II)若VP-ABCD=$\sqrt{2}$,求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.明朝數(shù)學(xué)家程大位將“孫子定理”(也稱(chēng)“中國(guó)剩余定理”)編成易于上口的《孫子口訣》:三人同行七十稀,五樹(shù)梅花廿一支,七子團(tuán)圓正半月,除百零五便得知.已知正整數(shù)n被3除余2,被5除余3,被7除余4,求n的最小值.按此口訣的算法如圖,則輸出n的結(jié)果為( 。
A.53B.54C.158D.263

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上有一個(gè)點(diǎn)A,它關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為B,點(diǎn)F為橢圓的右焦點(diǎn),且滿足AF⊥BF,當(dāng)∠ABF=$\frac{π}{12}$時(shí),橢圓的離心率為$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在平面直角坐標(biāo)系 xOy中,已知拋物線E:y2=2px(p>0)的焦點(diǎn)為F,P是拋物線 E上位于第一象限內(nèi)的任意一點(diǎn),Q是線段 PF上的點(diǎn),且滿足$\overrightarrow{OQ}=\frac{2}{3}\overrightarrow{OP}+\frac{1}{3}\overrightarrow{OF}$,則直線 OQ的斜率的最大值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{3}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知點(diǎn)M(x,y)為平面區(qū)域D:$\left\{\begin{array}{l}{x-y≥0}\\{y-\frac{1}{x}≤0}\\{y≥a,(0<a<1)}\end{array}\right.$內(nèi)的一個(gè)動(dòng)點(diǎn),若z=$\frac{y+1}{x}$的最大值為3,則區(qū)域D的面積為( 。
A.ln2+$\frac{5}{8}$B.ln2-$\frac{1}{2}$C.ln2+$\frac{1}{8}$D.ln2-$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)=$\frac{f(b)-f(a)}{b-a}$,則稱(chēng)函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0而是它的一個(gè)均值點(diǎn).
例如y=|x|是[-2,2]上的“平均值函數(shù)”,0就是它的均值點(diǎn).給出以下命題:
①函數(shù)f(x)=sinx-1是[-π,π]上的“平均值函數(shù)”;
②若y=f(x)是[a,b]上的“平均值函數(shù)”,則它的均值點(diǎn)x0≤$\frac{a+b}{2}$;
③若函數(shù)f(x)=x2+mx-1是[-1,1]上的“平均值函數(shù)”,則實(shí)數(shù)m∈(-2,0);
④若f(x)=lnx是區(qū)間[a,b](b>a≥1)上的“平均值函數(shù)”,x0是它的一個(gè)均值點(diǎn),則lnx0<$\frac{1}{{\sqrt{ab}}}$.
其中的真命題有①③④(寫(xiě)出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若復(fù)數(shù)z=(sinα-$\frac{1}{3}$)+i(cosα-$\frac{2\sqrt{2}}{3}$)是純虛數(shù)(i是虛數(shù)單位),則tanα的值為( 。
A.$\frac{\sqrt{2}}{4}$B.-$\frac{\sqrt{2}}{4}$C.2$\sqrt{2}$D.-2$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案