【題目】某測試團隊為了研究“飲酒”對“駕車安全”的影響,隨機選取名駕駛員先后在無酒狀態(tài)、酒后狀態(tài)下進行“停車距離”測試.測試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車距離”(駕駛員從看到意外情況到車子完全停下所需要的距離).無酒狀態(tài)與酒后狀態(tài)下的試驗數(shù)據(jù)分別列于表1和表2.

表1

停車距離(米)

頻數(shù)

24

42

24

9

1

表2

平均每毫升血液酒精含量毫克

10

30

50

70

90

平均停車距離

30

50

60

70

90

回答以下問題.

(1)由表1估計駕駛員無酒狀態(tài)下停車距離的平均數(shù);

(2)根據(jù)最小二乘法,由表2的數(shù)據(jù)計算關(guān)于的回歸方程;

(3)該測試團隊認為:駕駛員酒后駕車的平均“停車距離”大于(1)中無酒狀態(tài)下的停車距離平均數(shù)的倍,則認定駕駛員是“醉駕”.請根據(jù)(2)中的回歸方程,預(yù)測當每毫升血液酒精含量大于多少毫克時為“醉駕”?(精確到個位)

(附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為,

【答案】(1)27.1(2)(3)大于毫克時為“醉駕”

【解析】分析:(1)每個區(qū)間的中點作為估計值進行計算可得平均數(shù);

(2)根據(jù)所給公式計算回歸方程中的系數(shù)即可;

(3)由(2)解不等式可得.

詳解:(1)

(2)

∴回歸方程為

(3)由題意知:,∴

∴預(yù)測當每毫升血液酒精含量大于毫克時為“醉駕”

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一新生共有320人,其中男生192人,女生128人.為了解高一新生對數(shù)學(xué)選修課程的看法,采用分層抽樣的方法從高一新生中抽取5人進行訪談.

(Ⅰ)這5人中男生、女生各多少名?

(Ⅱ)從這5人中隨即抽取2人完成訪談問卷,求2人中恰有1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,直線C1的參數(shù)方程為t為參數(shù)),以O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ21+sin2θ)=2,點M的極坐標為(,).

1)求點M的直角坐標和C2的直角坐標方程;

2)已知直線C1與曲線C2相交于A,B兩點,設(shè)線段AB的中點為N,求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列中,,,數(shù)列滿足.

1)求數(shù)列中的前四項;

2)求證:數(shù)列是等差數(shù)列;

3)若,試判斷數(shù)列是否有最小項,若有最小項,求出最小項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若圓關(guān)于直線對稱,則的最小值為__________.由點向圓所作兩條切線,切點記為,當取最小值時,外接圓的半徑為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設(shè)污水凈化管道(管道構(gòu)成Rt△FHE,H是直角項點)來處理污水.管道越長,污水凈化效果越好.設(shè)計要求管道的接口H是AB的中點,E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=

(1)試將污水凈化管道的長度L表示為的函數(shù),并寫出定義域;

(2)當取何值時,污水凈化效果最好?并求出此時管道的長度L.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個正方形花圃被分成5.

1)若給這5個部分種植花,要求相鄰兩部分種植不同顏色的花,己知現(xiàn)有紅、黃、藍、綠4種顏色不同的花,求有多少種不同的種植方法?

2)若向這5個部分放入7個不同的盆栽,要求每個部分都有盆栽,問有多少種不同的放法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第一次大考后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進行分析,規(guī)定:大于或等于分為優(yōu)秀,分以下為非優(yōu)秀,統(tǒng)計成績后,得到如下列聯(lián)表,且已知在甲、乙兩個文科班全部人中隨機抽取人為優(yōu)秀的概率為.

I)請完成列聯(lián)表:

優(yōu)秀

非優(yōu)秀

合計

甲班

乙班

合計

()根據(jù)列聯(lián)表的數(shù)據(jù)能否在犯錯誤的概率不超過的前提下認為成績與班級有關(guān)系?

參考公式和臨界值表:

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足.

(1)求函數(shù)f(x)g(x)的表達式;

(2)時,不等式恒成立,求實數(shù)a的取值范圍;

(3)若方程上恰有一個實根,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案