【題目】第一次大考后,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,規(guī)定:大于或等于分為優(yōu)秀,分以下為非優(yōu)秀,統(tǒng)計(jì)成績(jī)后,得到如下列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部人中隨機(jī)抽取人為優(yōu)秀的概率為.
(I)請(qǐng)完成列聯(lián)表:
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
甲班 | |||
乙班 | |||
合計(jì) |
(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為成績(jī)與班級(jí)有關(guān)系?
參考公式和臨界值表:
,其中.
【答案】(I)填表見詳解;(Ⅱ) 在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為成績(jī)與班級(jí)有關(guān)系.
【解析】
(I)由已知概率先求出總的優(yōu)秀人數(shù),然后可以把列聯(lián)表補(bǔ)充完整.
(Ⅱ)由列聯(lián)表計(jì)算的值,然后比較臨界值可以得出結(jié)論.
(I)在甲、乙兩個(gè)文科班全部人中隨機(jī)抽取人為優(yōu)秀的概率為,
所以總的優(yōu)秀人數(shù)為.
列聯(lián)表如下所示:
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
甲班 | |||
乙班 | |||
合計(jì) |
(Ⅱ)由列聯(lián)表的數(shù)據(jù),得到,
而,
因此,在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為成績(jī)與班級(jí)有關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示:
(1)求的解析式;
(2)求的單調(diào)區(qū)間和對(duì)稱中心坐標(biāo);
(3)將的圖象向左平移個(gè)單位,再將橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,最后將圖象向上平移1個(gè)單位,得到函數(shù)的圖象,求函數(shù)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某測(cè)試團(tuán)隊(duì)為了研究“飲酒”對(duì)“駕車安全”的影響,隨機(jī)選取名駕駛員先后在無(wú)酒狀態(tài)、酒后狀態(tài)下進(jìn)行“停車距離”測(cè)試.測(cè)試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車距離”(駕駛員從看到意外情況到車子完全停下所需要的距離).無(wú)酒狀態(tài)與酒后狀態(tài)下的試驗(yàn)數(shù)據(jù)分別列于表1和表2.
表1
停車距離(米) | |||||
頻數(shù) | 24 | 42 | 24 | 9 | 1 |
表2
平均每毫升血液酒精含量毫克 | 10 | 30 | 50 | 70 | 90 |
平均停車距離米 | 30 | 50 | 60 | 70 | 90 |
回答以下問題.
(1)由表1估計(jì)駕駛員無(wú)酒狀態(tài)下停車距離的平均數(shù);
(2)根據(jù)最小二乘法,由表2的數(shù)據(jù)計(jì)算關(guān)于的回歸方程;
(3)該測(cè)試團(tuán)隊(duì)認(rèn)為:駕駛員酒后駕車的平均“停車距離”大于(1)中無(wú)酒狀態(tài)下的停車距離平均數(shù)的倍,則認(rèn)定駕駛員是“醉駕”.請(qǐng)根據(jù)(2)中的回歸方程,預(yù)測(cè)當(dāng)每毫升血液酒精含量大于多少毫克時(shí)為“醉駕”?(精確到個(gè)位)
(附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 下列結(jié)論錯(cuò)誤的是
A. 命題:“若,則”的逆否命題是“若,則”
B. “”是“”的充分不必要條件
C. 命題:“, ”的否定是“, ”
D. 若“”為假命題,則均為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線.
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若對(duì)任意時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《福建省高考改革試點(diǎn)方案》規(guī)定:從2018年秋季高中入學(xué)的新生開始,不分文理科;2021年開始,高考總成績(jī)由語(yǔ)數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成,將每門選考科目的考生原始成績(jī)從高到低劃分為A、B+、B、C+、C、D+、D、E共8個(gè)等級(jí),參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%、7%、18%、22%、22%、18%、7%、3%,選考科目成績(jī)計(jì)入考生總成績(jī)時(shí),將A至E等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71.80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績(jī),某校高一年級(jí)共2000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六門選考科目進(jìn)行測(cè)試,其中化學(xué)考試原始成績(jī) 基本服從正態(tài)分布.
(1)求化學(xué)原始成績(jī)?cè)趨^(qū)間(57,96)的人數(shù);
(2)以各等級(jí)人數(shù)所占比例作為各分?jǐn)?shù)區(qū)間發(fā)生的概率,按高考改革方案,若從全省考生中隨機(jī)抽取3人,記表示這3人中等級(jí)成績(jī)?cè)趨^(qū)間[71,90]的人數(shù),求事件的概率
(附:若隨機(jī)變量,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的奇函數(shù),且,若且時(shí),有成立.
(1)判斷在上的單調(diào)性,并用定義證明;
(2)解不等式;
(3)若對(duì)所有的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(a>0且a≠1)是奇函數(shù).
(1)求常數(shù)k的值;
(2)若已知f(1)=,且函數(shù)在區(qū)間[1,+∞])上的最小值為—2,求實(shí)數(shù)m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com