【題目】數(shù)列中,,,數(shù)列滿足.
(1)求數(shù)列中的前四項;
(2)求證:數(shù)列是等差數(shù)列;
(3)若,試判斷數(shù)列是否有最小項,若有最小項,求出最小項.
【答案】(1),,,;(2)見解析;(3)有最小項,最小項是.
【解析】
(1)由數(shù)列的遞推公式,可計算出數(shù)列的前四項,代入,即可計算出數(shù)列中的前四項;
(2)利用數(shù)列的遞推公式計算出為常數(shù),結合等差數(shù)列的定義可證明出數(shù)列是等差數(shù)列;
(3)求出數(shù)列的通項公式,可求出,進而得出,利用作商法判斷數(shù)列的單調性,從而可求出數(shù)列的最小項.
(1)且,
,,.
,,,
,;
(2),而,
,.
因此,數(shù)列是首項為,公差為的等差數(shù)列;
(3)由(2)得,則.
,顯然,
,
當時,,則;
當時,,則;
當時,,則;
當且時,,即.
,,
所以,數(shù)列有最小項,最小項是.
科目:高中數(shù)學 來源: 題型:
【題目】設全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示:
(1)求的解析式;
(2)求的單調區(qū)間和對稱中心坐標;
(3)將的圖象向左平移個單位,再將橫坐標伸長到原來的2倍,縱坐標不變,最后將圖象向上平移1個單位,得到函數(shù)的圖象,求函數(shù)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)滿足且,則稱函數(shù)為“函數(shù)”.
試判斷是否為“函數(shù)”,并說明理由;
函數(shù)為“函數(shù)”,且當時,,求的解析式,并寫出在上的單調遞增區(qū)間;
在條件下,當時,關于的方程為常數(shù)有解,記該方程所有解的和為,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某測試團隊為了研究“飲酒”對“駕車安全”的影響,隨機選取名駕駛員先后在無酒狀態(tài)、酒后狀態(tài)下進行“停車距離”測試.測試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車距離”(駕駛員從看到意外情況到車子完全停下所需要的距離).無酒狀態(tài)與酒后狀態(tài)下的試驗數(shù)據(jù)分別列于表1和表2.
表1
停車距離(米) | |||||
頻數(shù) | 24 | 42 | 24 | 9 | 1 |
表2
平均每毫升血液酒精含量毫克 | 10 | 30 | 50 | 70 | 90 |
平均停車距離米 | 30 | 50 | 60 | 70 | 90 |
回答以下問題.
(1)由表1估計駕駛員無酒狀態(tài)下停車距離的平均數(shù);
(2)根據(jù)最小二乘法,由表2的數(shù)據(jù)計算關于的回歸方程;
(3)該測試團隊認為:駕駛員酒后駕車的平均“停車距離”大于(1)中無酒狀態(tài)下的停車距離平均數(shù)的倍,則認定駕駛員是“醉駕”.請根據(jù)(2)中的回歸方程,預測當每毫升血液酒精含量大于多少毫克時為“醉駕”?(精確到個位)
(附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 下列結論錯誤的是
A. 命題:“若,則”的逆否命題是“若,則”
B. “”是“”的充分不必要條件
C. 命題:“, ”的否定是“, ”
D. 若“”為假命題,則均為假命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在上的奇函數(shù),且,若且時,有成立.
(1)判斷在上的單調性,并用定義證明;
(2)解不等式;
(3)若對所有的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com