【題目】隨著手機的普及,大學生迷戀手機的現(xiàn)象非常嚴重.為了調(diào)查雙休日大學生使用手機的時間,某機構采用不記名方式隨機調(diào)查了使用手機時間不超過小時的名大學生,將人使用手機的時間分成組:,,分別加以統(tǒng)計,得到下表,根據(jù)數(shù)據(jù)完成下列問題:

使用時間/

大學生/

(1)完成頻率分布直方圖;

(2)根據(jù)頻率分布直方圖估計大學生使用手機的平均時間.

【答案】(1)見解析.(2) .

【解析】

(1)根據(jù)題意得到頻率分布直方表,進而畫出頻率分布直方圖;(2)根據(jù)頻率分布直方圖的平均數(shù)計算的公式得到結果.

(1)根據(jù)題意,可將數(shù)據(jù)做如下整理:

使用時間/

大學生/

12

頻率

0.1

頻率/組距

(2)平均時間的估計值為(時).

大學生使用手機的平均時間約為小時.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:對任意的t>0,存在唯一的s,使t=f(s).
(3)設(2)中所確定的s關于t的函數(shù)為s=g(t),證明:當t>e2時,有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,已知四邊形BCDE為直角梯形,,,且ABE的中點沿AD折到位置如圖,連結PC,PB構成一個四棱錐

求證;

平面ABCD

求二面角的大;

在棱PC上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量(單位:)和年利潤(單位:千元)的影響,對近13年的宣傳費和年銷售量 數(shù)據(jù)作了初步處理,得到散點圖及一些統(tǒng)計量的值.

由散點圖知,按建立關于的回歸方程是合理的.令,則,經(jīng)計算得如下數(shù)據(jù):

10.15

109.94

0.16

-2.10

0.21

21.22

最小二乘法求線性回歸方程系數(shù)公式

Ⅰ)根據(jù)以上信息,建立關于的回歸方程;

Ⅱ)已知這種產(chǎn)品的年利潤的關系為.根據(jù)(1)的結果,求當年宣傳費時,年利潤的預報值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,首項a1=1,且a3+1a2+1a4+2的等比中項.

1)求數(shù)列{an}的通項公式;

2)設bn=,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點A在y軸正半軸上,點Pn在x軸上,其橫坐標為xn , 且{xn} 是首項為1、公比為2的等比數(shù)列,記∠PnAPn+1n , n∈N*

(1)若 ,求點A的坐標;
(2)若點A的坐標為(0,8 ),求θn的最大值及相應n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),在一個周期內(nèi)的圖像如圖所示.

(I)求函數(shù)的解析式;

(II)設,且方程有兩個不同的實數(shù)根,求實數(shù)的取值范圍以及這兩個根的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《張邱建算經(jīng)》是中國古代數(shù)學史上的杰作,該書中有首古民謠記載了一數(shù)列問題:“南山一棵竹,竹尾風割斷,剩下三十節(jié),一節(jié)一個圈,頭節(jié)高五寸,頭圈一尺三,逐節(jié)多三分,逐圈少分三,一蟻往上爬,遇圈則繞圈。爬到竹子頂,行程是多遠?”(注釋:①第節(jié)的高度為0.5尺;②第一圈的周長為1.3尺;③每節(jié)比其下面的一節(jié)多0.03尺;④每圈周長比其下面的一圈少0.013尺),問:此民謠提出的問題的答案是( )

A. 61.395尺B. 61.905尺C. 72.705尺D. 73.995尺

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓C: 的左右焦點分別是F1 , F2 , 離心率為 ,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點P是橢圓C上除長軸端點外的任一點,連接PF1 , PF2 , 設∠F1PF2的角平分線PM交C的長軸于點M(m,0),求m的取值范圍;
(3)在(2)的條件下,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點,設直線PF1 , PF2的斜率分別為k1 , k2 , 若k≠0,試證明 為定值,并求出這個定值.

查看答案和解析>>

同步練習冊答案