A. | 0 | B. | $\frac{3}{2}$ | C. | 2 | D. | $\frac{5}{2}$ |
分析 先根據兩角和差的正弦公式,化簡f(x),再根據圖象的平移求出g(x),最后根據定積分計算即可.
解答 解:∵f(x)=sin2x-$\sqrt{3}$cos2x=2sin(2x-$\frac{π}{3}$),
又y=g(x)的圖象是由函數(shù)f(x)=sin2x-$\sqrt{3}$cos2x的圖象向左平移$\frac{π}{6}$個單位而得到的,
∴g(x)=2sin[2(x+$\frac{π}{6}$)-$\frac{π}{3}$]=2sin2x,
∴函數(shù)y=g(x)的圖象與直線x=0,x=$\frac{2π}{3}$,x軸圍成的封閉圖形的面積S=${∫}_{0}^{\frac{2π}{3}}$2sin2xdx=-cos2x|${\;}_{0}^{\frac{2π}{3}}$=-(cos$\frac{2π}{3}$-cos0)=$\frac{3}{2}$,
故選:B.
點評 本題主要考查兩角和差的正弦公式的應用,函數(shù)y=Asin(ωx+∅)的圖象變換規(guī)律,以及定積分在幾何中的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {-2,-1,0,1,2} | B. | [-2,2] | C. | [0,1] | D. | {0,1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | p∧q | B. | ¬p∧q | C. | p∨¬q | D. | ¬p∧¬q |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com