10.命題p:若2x≥2y,則1gx≥1gy;
命題q:若隨機變量ξ服從正態(tài)分布N(3,σ2),P(ξ≤6)=0.72,則P(ξ≤0)=0.28.
下列命題為真命題的是( 。
A.p∧qB.¬p∧qC.p∨¬qD.¬p∧¬q

分析 命題p:是假命題,取x=0,y=-1,lg0,lg(-1)沒有意義;命題q:由于P(ξ≤0)=1-P(ξ≤6)即可得出,利用復合命題真假的判定方法即可得出.

解答 解:命題p:若2x≥2y,則1gx≥1gy,是假命題,取x=0,y=-1,lg0,lg(-1)沒有意義;
命題q:若隨機變量ξ服從正態(tài)分布N(3,σ2),P(ξ≤6)=0.72,則P(ξ≤0)=1-P(ξ≤6)=0.28.
命題為真命題的是¬p∧q.
故選:B.

點評 本題考查了函數(shù)的性質(zhì)、正態(tài)分布的性質(zhì)、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)y=g(x)的圖象是由函數(shù)f(x)=sin2x-$\sqrt{3}$cos2x的圖象向左平移$\frac{π}{6}$個單位而得到的,則函數(shù)y=g(x)的圖象與直線x=0,x=$\frac{2π}{3}$,x軸圍成的封閉圖形的面積為( 。
A.0B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知|$\overrightarrow a}$|=2,$|{\overrightarrow b}$|=3,且$\overrightarrow a$、$\overrightarrow b$的夾角為$\frac{π}{3}$,則|3$\overrightarrow a$-2$\overrightarrow b}$|=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知x,y滿足約束條件$\left\{\begin{array}{l}2x+y-3≥0\\ x-y≤0\\ x-3≤0\end{array}\right.$,則目標函數(shù)z=2x-3y的最大值是( 。
A.15B.5C.-1D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點M($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$),且E的長軸長是短軸長的$\sqrt{2}$倍,F(xiàn)1,F(xiàn)2分別是E的左,右焦點.
(Ⅰ)求橢圓E的離心率與標準方程;
(Ⅱ)若拋物線y2=4x上存在兩點A,B,橢圓E上存在兩點C,D,滿足A,B,F(xiàn)2三點共線,C,D,F(xiàn)2三點共線,且CD⊥AB,求四邊形ADBC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列函數(shù)中值域為實數(shù)集的偶函數(shù)是( 。
A.f(x)=|lnx|(x>0)B.f(x)=ln|x|(x≠0)C.f(x)=x-$\frac{1}{x}$(x≠0)D.f(x)=x+$\frac{1}{x}$(x≠0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設(shè)F1,F(xiàn)2分別是橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點,過點F1的直線交橢圓E于A,B兩點,AF1=3BF1
(Ⅰ)若AB=4,△ABF2的周長為16,求AF2;
(Ⅱ)若cos∠AF2B=$\frac{3}{5}$,求橢圓E的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.函數(shù)f(x)=sin(2x+$\frac{π}{6}$)在x取何值時達到最大值,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若(a+b)n展開式的第4項和第7項的系數(shù)相等,則該展開式共有( 。
A.8項B.9項C.10項D.11項

查看答案和解析>>

同步練習冊答案