分析 (Ⅰ)利用二倍角以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期,最后將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調(diào)遞增區(qū)間;
(2)x∈[-$\frac{π}{12}$,$\frac{π}{2}$]時,求出內(nèi)層函數(shù)的取值范圍,方程f(x)=0有實數(shù)解,結(jié)合三角函數(shù)的圖象和性質(zhì),即可求實數(shù)m的取值范圍.
解答 解:(Ⅰ)函數(shù)f(x)=$\sqrt{3}$sinxcosx-cos2x-m.
化簡可得:f(x)=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x-$\frac{1}{2}$-m=sin(2x-$\frac{π}{6}$)-$\frac{1}{2}-m$.
∴函數(shù)f(x)的最小正周期T=$\frac{2π}{2}=π$.
令$-\frac{π}{2}+2kπ≤$2x-$\frac{π}{6}$$≤\frac{π}{2}+2kπ$,k∈Z.
得:$-\frac{π}{6}+kπ$≤x≤$\frac{π}{3}+kπ$.
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[$-\frac{π}{6}+kπ$,$\frac{π}{3}+kπ$],k∈Z.
(2)由x∈[-$\frac{π}{12}$,$\frac{π}{2}$],f(x)=sin(2x-$\frac{π}{6}$)-$\frac{1}{2}-m$.
∴2x-$\frac{π}{6}$∈[$-\frac{π}{3}$,$\frac{5π}{6}$],
∴$-\frac{\sqrt{3}}{2}$≤sin(2x-$\frac{π}{6}$)≤1,
方程f(x)=0有實數(shù)解,即sin(2x-$\frac{π}{6}$)=$\frac{1}{2}+m$.
∴$-\frac{\sqrt{3}}{2}$≤$\frac{1}{2}+m$≤1.
解得:$-\frac{\sqrt{3}+1}{2}$≤m≤$\frac{1}{2}$,
故得實數(shù)m的取值范圍是[$-\frac{\sqrt{3}+1}{2}$,$\frac{1}{2}$].
點評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運用,利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關(guān)鍵.屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{10}$ | B. | 4 | C. | $2\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com