【題目】隨著移動(dòng)互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機(jī)軟件層出不窮.為調(diào)查某款訂餐軟件的商家的服務(wù)情況,統(tǒng)計(jì)了10次訂餐“送達(dá)時(shí)間”,得到莖葉圖如下:(時(shí)間:分鐘)
(1)請(qǐng)計(jì)算“送達(dá)時(shí)間”的平均數(shù)與方差:
(2)根據(jù)莖葉圖填寫下表:
送達(dá)時(shí)間 | 35分組以內(nèi)(包括35分鐘) | 超過35分鐘 |
頻數(shù) | A | B |
頻率 | C | D |
在答題卡上寫出,,,的值;
(3)在(2)的情況下,以頻率代替概率.現(xiàn)有3個(gè)客戶應(yīng)用此軟件訂餐,求出在35分鐘以內(nèi)(包括35分鐘)收到餐品的人數(shù)的分布列,并求出數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】光伏發(fā)電是利用太陽能電池及相關(guān)設(shè)備將太陽光能直接轉(zhuǎn)化為電能.近幾年在國內(nèi)出臺(tái)的光伏發(fā)電補(bǔ)貼政策的引導(dǎo)下,某地光伏發(fā)電裝機(jī)量急劇上漲,如下表:
某位同學(xué)分別用兩種模型:①②進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,殘差圖如下(注:殘差等于):
經(jīng)過計(jì)算得,.
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)該選擇哪個(gè)模型?并簡要說明理由.
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù)建立y關(guān)于x的回歸方程,并預(yù)測(cè)該地區(qū)2020年新增光伏裝機(jī)量是多少.(在計(jì)算回歸系數(shù)時(shí)精確到0.01)
附:歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知點(diǎn),過點(diǎn)作直線、與圓:和拋物線:都相切.
(1)求拋物線的兩切線的方程;
(2)設(shè)拋物線的焦點(diǎn)為,過點(diǎn)的直線與拋物線相交于、兩點(diǎn),與拋物線的準(zhǔn)線交于點(diǎn)(其中點(diǎn)靠近點(diǎn)),且,求與的面積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,為梯形,,,,,,.
(1)在線段上有一個(gè)動(dòng)點(diǎn),滿足且平面,求實(shí)數(shù)的值;
(2)已知與的交點(diǎn)為,若,且平面,求二面角平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的離心率為,分別是橢圓的左右焦點(diǎn),點(diǎn)是橢圓上任意一點(diǎn),且.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)在直線上是否存在點(diǎn)Q,使以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O,若存在,求出線段的長的最小值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)若是函數(shù)的導(dǎo)函數(shù)的零點(diǎn),求的單調(diào)區(qū)間;
(2)若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,,E為AB的中點(diǎn).將沿DE翻折,得到四棱錐.設(shè)的中點(diǎn)為M,在翻折過程中,有下列三個(gè)命題:
①總有平面;
②線段BM的長為定值;
③存在某個(gè)位置,使DE與所成的角為90°.
其中正確的命題是_______.(寫出所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的左、右焦點(diǎn)分別是,,,是其左右頂點(diǎn),點(diǎn)是橢圓上任一點(diǎn),且的周長為6,若面積的最大值為.
(1)求橢圓的方程;
(2)若過點(diǎn)且斜率不為0的直線交橢圓于,兩個(gè)不同點(diǎn),證明:直線與的交點(diǎn)在一條定直線上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com